Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Sepehr Sadighi
"In this research, based on actual data gathered from an industrial scale vacuum gas oil (VGO) hydrocracker and artificial neural network (ANN) method, a model is proposed to simulate yields of products including light gases, liquefied petroleum gas (LPG), light naphtha, heavy naphtha, kerosene, diesel and unconverted oil (off-test). The input layer of the ANN model consists of the catalyst, feed and recycle flow rates, and bed temperatures, while the output neurons are yields of those products. The results showed that the AAD% (average absolute deviation) of the developed ANN model for training, testing, and validating data are 0.445%, 1.131% and 0.755%, respectively. Then, by considering all operational constraints, the results confirmed that the decision variables (i.e., recycle rate and bed temperatures) generated by the optimization approach can enhance the gross profit of the hydrocracking process to more than $0.81 million annually, which is significant for the economy of the target refinery."
Depok: Faculty of Engineering, Universitas Indonesia, 2018
UI-IJTECH 9:1 (2018)
Artikel Jurnal  Universitas Indonesia Library
cover
Sepehr Sadighi
"Experience in applying a hybrid artificial neural network (ANN)-genetic algorithm for modeling and optimizing the Hall-Heroult process for aluminum extraction is described in this study. During the stage of modeling, the most important and effective process variables including temperature and cell voltage, metal and bath heights, purity of CaF2 and Al2O3, and bath ratio are chosen as input variables whilst outputs of the model are product purity, ampere efficiency, and product rate. During three years of operation, 19 points were selected for building and training, 7 points for testing, and 7 data points for validating the model. Results show that a feed-forward Artificial Neural Network (ANN) model with 3 neurons in the hidden layer can acceptably simulate the mentioned output variables with the Mean Squared Error (MSE) of 0.002%, 0.108% and 0.407%, respectively. Utilizing the validated model and multi-objective genetic algorithms, aluminum purity and the rate of production are maximized by manipulating decision variables. Results show that setting these decision variables at the optimal values can increase approximately the metal purity, ampere efficiency, and product rate by 0.007%, 0.185%, and 20kg/h, respectively."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:3 (2015)
Artikel Jurnal  Universitas Indonesia Library