Ditemukan 1 dokumen yang sesuai dengan query
Sinaga, Bona Revano
"
ABSTRAKKlasifikasi data kanker dilakukan untuk mendapatkan terapi yang spesifik dengan hasil efektivitas yang maksimal dan toksisitas yang minimal. Pada tugas akhir ini, data yang digunakan berbasis micrroarray data yang berisi kumpulan ekspresi gen. Fitur pada micrroarray data tersebut diseleksi oleh feature selection guna meningkatkan keakuratan, sensitivitas, kekhususan. Pada feature selection, setiap fitur pada microarray data dilakukan clustering dengan metode k-means clustering. Fitur yang terseleksi membentuk micorarray baru. Sampel pada microarray baru tersebut diklasifikasi menggunakan metode optimisasi baru yaitu Cuckoo Optimization Algorithm yang terinsipirasi dari cara hidup burung Cuckoo. Metode ini juga disesuaikan dengan metode Cuckoo Search.
ABSTRAKClassification of cancer data is performed to obtain specific treatment with the results have maximum effectiveness and minimum toxicity. In this thesis, the data is microarray data that contains a collection of gene expression. Features on these micrroarray data selected by the feature selection to improve the accuracy, sensitivity, specificity. In the feature selection, each feature on the microarray data were clustering with k-means clustering method. Selected features form to the new micorarray data. The new samples on the microarray are classified using new optimization methods that Cuckoo Optimization Algorithm which is inspired by the way of life of the Cuckoo. This method is also adapted from Cuckoo Search"
2016
S64957
UI - Skripsi Membership Universitas Indonesia Library