Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Suwandi Dwi Sahputro
"ABSTRAK
Perkembangan teknologi robotika saat ini telah mampu membuat beberapa robot untuk secara kooperatif melakukan suatu tugas tertentu. Untuk aplikasi ini, setiap robot harus mampu mengetahui posisinya sendiri maupun posisi robot yang lain agar mampu mencapai tujuannya dan tidak saling bersinggungan. Keterbatasan sensor posisi yang ada saat ini, hanya mampu memberikan posisi dari satu robot saja dan jika digunakan satu jenis sensor saja seringkali menimbulkan error yang cukup besar. Maka pada skripsi akan dibahas implementasi computer vision yang mampu mendeteksi dan memberikan data posisi dari beberapa objek berupa mobile robot. Perancangan dimulai dengan membuat pattern pola untuk mobile robot yang akan dideteksi. Pattern objek yang akan ditelaah yaitu berupa empat lingkaran putih diatas persegi berwarna hitam. Dimana satu lingkaran berukuran jauh lebih besar dan digunakan sebagai pusat objek. Selain itu, ditambah juga dengan persegi panjang dengan jumlah yang bervariasi untuk membedakan masing-masing robot.Hasil dari pengujian yang dilakukan, algoritma pendeteksian mampu membedakan pattern mobile robot dengan objek lain dan membedakan mobile robot yang satu dengan mobile robot yang lain, algoritma efektif bekerja pada jarak pengambilan gambar 1 meter dan 2 meter dengan sudut pengambilan gambar 0o, 15o dan 30o. Tingkat keberhasilan pendeteksian pada kondisi tanpa getaran sebesar 99.18 dan pada kondisi getaran sebesar 82.76 . Waktu pemrosesan yang dibutuhkan untuk menjalankan algoritma pada Raspberry Pi 3 sebesar 123.2 ms.

ABSTRACT
The development of robotics technology has reach point where multiple robots are able to perform a task cooperatively. This application require each robot to know of its own position and the others position to reach its destination without crashing on each other. Currently, the position sensors has a drawback from its estimation error. Therefore, implementation of computer vision for detecting multi mobile robot is proposed. First the pattern design of mobile robots are specifically determined as the focus of object detection using four white circles in black background. The pattern design include a big circle as the mobile robot center of gravity and rectangles to differentiate beetwen each mobile robot.The results show that detection algorithm is able to differentiate each mobile robots. The proposed algorithm is effective for distance 1 and 2 meters with angle 0o, 15o and 30o. Success detection rate with no vibrate condition is 99.18 and at vibrate condition is 82.76 . The processing time required to run the algorithm on Raspberry Pi 3 is 123.2 ms."
2017
S67426
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suwandi Dwi Sahputro
"Menggunakan dataset dari salah satu perusahaan cryptocurrency exchange di Indonesia, penelitian ini bertujuan untuk memprediksi churn di cryptocurrency exchange dan menganalisis faktor yang mempengaruhinya. Model yang dikembangkan dalam penelitian ini menggunakan decision tree dan random forest dengan dua kriteria churn yang berbeda. Kriteria churn pertama merupakan kombinasi dari recency dan saldo dalam dompet dan yang kedua hanya menggunakan recency namun lebih personal karena memperhitungkan riwayat jarak antar 2 transaksi dari masing-masing pengguna. Pada kiteria churn pertama, metode undersampling diterapkan sebelum pemodelan karena proporsi churn dan non-churn yang tidak seimbang. Hasilnya model yang dihasilkan dari data undersampling memiliki performa yang terbaik pada model decision tree maupun random forest dengan nilai AUC masing-masing sebesar 0,777 dan 0,787. Hasil dari kedua model juga menunjukkan bahwa penggunaan Google Authenticator dan frekuensi transaksi cryptocurrency merupakan faktor penting untuk menentukan apakah pelanggan akan mengalami churn.

Using datasets from one cryptocurrency exchange company in Indonesia, this study aims to predict churn in cryptocurrency exchange and analyze the factor that impacts it. The model developed in this work uses a decision tree and a random forest with 2 different churn criteria. The first criteria is combined the recency and wallet balance amount and the second is used personalized recency (calculate the days between 2 transactions). For the first criteria, the undersampling method is applied before modeling due to imbalanced data. As the result, models from the undersampling dataset have the best performance for the decision tree and the random forest with AUC value of 0,777 and 0,787. Results from both models suggested that the use of Google Authenticator and the frequency of cryptocurrency transactions are important factors to determine whether a customer will experience churn."
Jakarta: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library