Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Veny Anggraini
"ABSTRAK
Cekungan Jawa Timur Utara memiliki banyak lapangan minyak yang telah di eksplorasi dan terbukti menghasilkan hidrokarbon, salah satunya lapangan Cloud. Lapangan ini telah memproduksi minyak mentah rata ? rata 2500 hingga 5000 BOPD per sumurnya. Dalam penelitian ini, dilakukan identifikasi rock type menggunakan pendekatan metode pore geometry structure (PGS) yang diharapkan dapat menjadi salah satu metode yang handal dalam meningkatkan kualitas karakterisasi reservoar karbonat Formasi Tuban. Lapangan Cloud memiliki data core berupa pengukuran porositas dan permeabilitas sebanyak 113 core plug dan 13 diantaranya memiliki data mercury injection capillary pressure (MICP). Selain itu digunakan data sumur sebanyak 5 buah. Analisis petrofisika dilakukan untuk mengetahui nilai parameter?parameter petrofisika pada masing?masing sumur. Selanjutnya dilakukan analisis PGS yang merupakan kunci utama dalam mengidentifikasi rock type. Terdapat 4 rock type pada lapangan ini yang diklasifikasi berdasarkan trend gradien kemiringan kurva PGS yaitu RRT1 memiliki gradien sebesar 0.4448; RRT2 memiliki gradien sebesar 0.4124; RRT3 memiliki gradien sebesar 0.3149; dan RRT4 memiliki gradien sebesar 0.2379. Identifikasi rock type menggunakan metode PGS dapat disebar pada interval sumur reservoar karbonat Formasi Tuban. Prediksi permeabilitas berdasarkan metode PGS dianggap sebagai quality control dalam persebaran rock type. Persebaran rock type dilakukan menggunakan pendekatan multi resolution graph based on clustering sehingga didapatkan rock type pada interval sumur reservoar karbonat Formasi Tuban.

ABSTRACT
North East Java Basin has many oil fields that have been proven to produce hydrocarbons. Cloud Field which is located in the North East Java Basin has been producing crude oil around 2500 to 5000 BOPD. This study has been focused on identifying rock types of carbonate reservoir in the Tuban Formation using Pore Geometry Structure (PGS) method. Cloud Field has core data and well-logging data. The core data are in the form of core porosity and permeability measurements of 113 core plug and 13 of them have data mercury injection capillary pressure (MICP), while well-logging data come from 5 wells. Petrophysical analysis has been conducted to determine the value of petrophysical parameters on each well. The analysis result shows that there are four rock types in Cloud Field which are classified based on the trend slope of the curve are RRT1 PGS had a gradient of 0.4448; RRT2 had a gradient of 0.4124; RRT3 had a gradient of 0.3149; and RRT4 had a gradient of 0.2379. Identification of rock type using PGS method can be deployed in Tuban Formation carbonate reservoir zone. Permeability prediction based on PGS method has been considered as quality control in the distribution of rock types. Rock type distribution is determined using an approach based on multi-resolution graph clusterin.
"
Lengkap +
2015
S58817
UI - Skripsi Membership  Universitas Indonesia Library
cover
Veny Anggraini
"Pertumbuhan pesat transaksi digital di Indonesia mendorong transformasi digital pada perbankan konvensional dan digital. Layanan bank digital sepenuhnya mengandalkan kemudahan akses melalui aplikasi mobile banking. LINE Bank, sebagai bank digital dari Hana Bank, memerlukan alat ukur kepuasan pelanggan yang sesuai dengan karakteristik bank digital tanpa bergantung pada survei di kantor cabang. Penelitian ini mengukur kepuasan pelanggan dengan menganalisis ulasan pengguna di mobile app stores menggunakan analisis sentimen dan faktor kualitas layanan Shankar. Proses ini melibatkan algoritma machine learning, seperti Logistic Regression, Random Forest, dan SVM. Tahapan penelitian meliputi ekstraksi data ulasan, pelabelan sentimen, preprocessing, ekstraksi fitur, klasifikasi model, dan evaluasi performa menggunakan F1-score karena distribusi data yang tidak merata. Dari 7.749 ulasan (96,36% dari Google Play Store dan 3,64% dari Apple App Store), penelitian menemukan bahwa pelanggan puas pada aspek Convenience, tetapi tidak puas pada aspek Navigation, Customer Support, Privacy and Security, dan Efficiency. Algoritma SVM menunjukkan performa terbaik dengan F1-score 0,884 untuk klasifikasi sentimen dan 0,715 untuk kualitas layanan menggunakan 10-Fold Cross Validation. Penelitian ini merekomendasikan SVM sebagai model efektif untuk mengukur kepuasan pelanggan berbasis analisis sentimen dan faktor kualitas layanan mobile banking Shankar. Hasil penelitian ini dapat membantu bank menangani keluhan nasabah, meningkatkan fitur layanan, dan memperbaiki layanan. Penelitian selanjutnya disarankan memperkaya kosa kata untuk tahapan normalisasi, menerapkan multi-lingual preprocessing, dan menganalisis hubungan semantik antar kata.

The rapid growth of digital transactions in Indonesia has driven digital transformation in both conventional and digital banking. Digital banking services rely entirely on easy access through mobile banking applications. LINE Bank, a digital bank by Hana Bank, requires a customer satisfaction measurement tool tailored to the characteristics of digital banking without relying on branch office surveys. This study measures customer satisfaction by analyzing user reviews from mobile app stores using sentiment analysis and Shankar's service quality factors. The process involves machine learning algorithms, such as Logistic Regression, Random Forest, and SVM. The research stages include data extraction of user reviews, sentiment labeling, preprocessing, feature extraction, model classification, and performance evaluation using F1-score due to the imbalance distribution of dataset. From 7,749 reviews (96.36% from Google Play Store and 3.64% from Apple App Store), the study found that customers were satisfied with the Convenience aspect but dissatisfied with Navigation, Customer Support, Privacy and Security, and Efficiency. The SVM algorithm demonstrated the best performance, achieving an F1-score of 0.884 for sentiment classification and 0.715 for service quality classification using 10-Fold Cross Validation. This study recommends SVM as the most effective model for measuring customer satisfaction based on sentiment analysis and mobile banking service quality factors by Shankar. The findings can assist banks in addressing customer complaints, improving features, and enhancing service quality. Future research is suggested to enrich vocabulary for normalization, implement multilingual preprocessing, and analyze semantic relationships between words."
Lengkap +
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2025
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library