Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17 dokumen yang sesuai dengan query
cover
Widodo Wahyu Purwanto
"Konverter katalitik merupakan suatu alat untuk mereduksi emisi polutan yang dihasilkan oleh pembakaran kendaraan bermotor, yang aplikasinya sejauh ini di Indonesia belum ada. Oleh sebab itu pengenalan dan studi tentang alat ini sangat diperlukan guna mendorong aplikasinya, sehingga diharapkan dapat mengurangi emisi gas berbahaya terutama di daerah perkotaan. Penelitian ini bertujuan untuk mengembangkan model matematika dari konverter katalitik dimulai dari pendekatan model 1 dimensi dan 3 dimensi untuk dua fase terutama untuk memahami fenomena dinamis saat cold-start dimana emisi hidrokarbon terbesar (60-80%) terjadi pada saat permanasan tersebut. Pemahaman fenomena ini sangat panting untuk pengembangan disain konverter katalitik.
Secara garis besar penelitian ini telah berhasil memodelkan cold start konverter katalitik baik untuk satu dimensi maupun untuk 3 dimensi. Untuk penyelesaian numerik model 1 dimensi dapat diselesaikan dengan mudah dengan menggunakan metode kolokasi dan Runge Kutta Gill sehingga model 1 dimensi dapat disimulasikan. Untuk model 3 dimensi, dikarenakan menggunakan model kinetika reaksi yang lebih kompleks dan jumlah komponen yang terlibat dalam reaksi lebih banyak, sehingga membutuhkan software yang lebih canggih (Fluent) yang menggunakan pendekatan volume hingga. Penyelesaian dengan Fluent masih menghadapi kendala untuk kinetika reaksi yang kompleks tersebut sehingga memerlukan pengembangan sub-routine di luar Fluent yang disebut User Define Function (UDF) sehingga memerlukan waktu yang cukup lama untuk menyelesaikannya. Untuk 3 dimensi, sampai saat ini kami baru berhasil mensimulasikan cold model (tanpa reaksi).
Berdasarkan hasil simulasi model 1 dimensi pemahaman fenomena cold-start yang di dapat dijelaskan berikut:
1. Pada kondisi cold-start waktu yang diperlukan untuk mengkonversi CO hingga mendapatkan gas buang dengan konsentrasi CO = 0% adalah 92 detik. Sedangkan pada kondisi awal temperatur konverter katalitik 550 K, untuk mencapai konentrasi CO keluar dari konverter katalitik sebesar 0,0064% diperlukan waktu 28 detik.
2. Temperatur awal yang lebih tinggi memberikan kinerja konverter katalitik yang lebih baik dibandingkan kondisi cold-start, sehingga adanya pemanas sebelum mesin dinyalakan merupakan salah satu alternatif menarik dalam disain katalitik konverter."
Depok: Universitas Indonesia, 2001
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Tujuan dari penelitian ini adalah untuk melakukan studi kinetika reaksi reformasi CH4/C02 menggunakan katalis Ni/A1203, dengan pendekatan analisis kinetika makro (`hukum pangkat sederhana' dan 'hukum pangkat kompleks') yang kemudian dikembangkan dengan analisis kinetika mikro. Hasil studi kinetika makro menunjukkan bahwa model kinetika `hukum pangkat kompleks' dapat memperbaiki model kinetika `hukum pangkat sederhana' yang selama ini dipakai pada reaksi reformasi C02/CH4.
Hasil pengembangan kinetika mikro menunjukkan bahwa model kinetika yang terbaik adalah yang diturunkan dari mekanisme khemisorpsi, dengan tahap penentu laju reaksinya adalah reaksi permukaan yang disertai dengan disosiasi C02.
Pada umumnya model kinetika makro dapat memprediksi data dengan baik, terutama jika kondisi operasinya berada pada rentang kondisi percobaan kinetika. Akan tetapi informasi kinetika yang diberikan oleh model kinetika makro tidak selengkap model kinetika mikro. Model kinetika `hukum pangkat sederhana' hanya berlaku pada rentang kondisi percobaan kinetika saja, sedangkan model `hukum pangkat kompleks' dan model kinetika mikro dapat dipakai pada rentang kondisi operasi yang lebih luas.
Parameter kinetika energi aktivasi yang diperoleh untuk semua model kinetika, ternyata lebih rendah dari pada entalpi reaksinya. Hal ini menunjukkan bahwa kemungkinan pengaruh tahanan difusi masih ada, atau kondisi isotermal yang tidak/belum terpenuhi."
Fakultas Teknik Universitas Indonesia, 1998
LP 1998 68
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"ABSTRAK
Fluidisasi fasa jamak adalah suatu sistim yang terdiri dari fasa gas, cair dari padat dimana padatan dalam keadaan tidak stasioner. Aplikasi fenomena fluidisasi fasa jamak adalah untuk alat persukar massa dan reaktor yang dapat ditemui dalam proses kimia dan petrokimia. Salah satu faktor penentu keberhasilan operasi adalah karakteristik hidrodinamik kolom tersebut. Untuk itu diadakan suatu penelitian mengenai studi hidrodinamik kolom fluidisasi fasa jamak.
Sebelum memulai penelitian, peralatan tersebut harus dibuat oleh penulis terlebih dahulu, kemudian dilakukan serangkaian percobaan pendahuluan. Hasil dari percobaan pendahuluan menyimpulkan bahwa alat tersebut layak untuk digunakan dalam penelitian studi hidrodinamik.
Dari hasil penelitian yang telah dilakukan menunjukkan bahwa variabel-variabel percobaan, seperti : kecepatan, gas, kecepatan, cairan, diameter partikel dan tinggi, mempengaruhi karakteristik hidrodinamik kolom fluidisasi fasa jamak, yang dinyatakan oleh parameter penurunan tekanan, kecepatan minimum fluidisasi tiap fasa. Pengaruh kecepatan cairan dan diameter partikel lebih dominan dibanding kecepatan gas."
Depok: Fakultas Teknik Universitas Indonesia, 1994
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Penelitian ini diawali dengan preparasi oksida logam CeO2 dengan metode presipitasi menggunakan bahan baku Ce (SO4) H2O. Untuk mengetahui adanya jenis iktatan CeO2 dilakukan karakterisasi FTIR dan luas permukaan diukur dengan metode BET. Oksida logam yang dihasilkan kemudian diuji aktivitasnya dengan cara mereduksinya terlebih dahulu dengan gas H2 (tempereatur 700 C laju alir 100 ml/menit) dan kemudian merekasikannya dengan reaktan CO2 di dalam rektor unggun tetap dengan beberapa variasi kondisi operasi. Variasi temperatur yang dilakukan pada penelitian ini berkisar 650 C sampai 800 C dengan interval kenaikan 50 C. Hasil pengujian menunjukkkan bahwa laju pembentukan CO yang tertinggi terjadi pada temperatur reaksi 800 C dan laju alir 80 ml/menit sebesar 0,000135 mol/menit. Pengujian tersebut juga menunjukkan kenaikan kapasitas adsorpsi seiring dengan kenaikan temperatur sampai temperatur 750 C dan kemudian menurun. Setelah dianalisis fenomena yang terjadi adalah tidak semua CO2 teradorpsi oleh reduktor menjadi produk gas CO sebagaian terperangkan di dalam reduktor."
1998
JUTE-XII-4-Des1998-369
Artikel Jurnal  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Dlm penelitian ini dirancang lima buah burenr bertipe Bunsen yaitu burner satu lubang, tiga lubang ,lima lubang,lubang bintang ,lubang tirus serta burner konvensional sbg pembanding .Selanjutnya kinerja tiap burener diuji dengan memvariasikan laju air gas LPG dan waktu pembakaran .Penelitian yg dilakukan meliputi pengukuran efisiensi termal, suhu nyala dan emisi gas C3,C4 CO2 CO dan NO.Hasil eksperimen menunjukkan bahwa ada peningkatan efisiensi termal dari kelima burner bertipe bunsen sekitar 10-23 % dibandingkan terhadap burner konvensional.Untuk kemampuan reduksi polutan,bila dibandingkan dengan burner konvensional ,burner 1 lubang menunjukkan kinerja terbaik dlm mereduksi C3 (28 %) dan CO(32,4%) burner tirus menunjukkan kinerja terbaik dlm reduksi C4(37,8%) dan utk kemampuan mereduksi emisi NO burner bintang menunjukkan kinerja terbaik (66.67%)"
2002
JUTE-XVI-2-Jun2002-101
Artikel Jurnal  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
Jakarta: UI-Press, 2007
PGB 0415
UI - Pidato  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Objectives of this research are mainly to study impacts of acidity strength (by varying amount of precipitant and loading Al-Si) and the effect of nickel particle size (by varying calcinations temperature) on decomposition reaction performances. In this research, high-nickel-loaded catalyst is prepared with two methods. Ni-Cu/Al catalysts were prepared with co-precipitation method. While the Ni-Cu/Al-Si catalyst were prepared by combined co-precipitation and sol-gel method. The direct cracking of methane was performed in 8mm quartz fixed bed reactor at atmospheric pressure and 500-700°C. The main results showed that the Al content of catalyst increases with the increasing amount of precipitant. The activity of catalyst increases with the increasing of catalyst?s acidity to the best possible point, and then increasing of acidity will reduce the activity of catalyst. Ni-Cu/4Al and Ni-Cu/11Al deactivated in a very short time hence produced fewer amount of nanocarbon, while Ni-Cu/15Al was active in a very long period. The most effective catalyst is Ni-Cu/22Al, which produced the biggest amount of nanocarbon (4.15 g C/g catalyst). Ni catalyst diameter has significant effect on reaction performances mainly methane conversion and product yield. A small Ni crystal size gave a high methane conversion, a fast deactivation and a low carbon yield. Large Ni particle diameter yielded a slow decomposition and low methane conversion. The highest methane conversion was produced by catalyst diameter of 4 nm and maximum yield of carbon of 4.08 g C/ g catalyst was achieved by 15.5 nm diameter of Ni catalyst."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
"Objectives of this research are mainly to study impacts of acidity strength (by varying amount of precipitant and loading Al-Si) and the effect of nickel particle size (by varying calcinations temperature) on decomposition reaction performances. In this research, high-nickel-loaded catalyst is prepared with two methods. Ni-Cu/Al catalysts were prepared with co-precipitation method. While the Ni-Cu/Al-Si catalyst were prepared by combined co-precipitation and sol-gel method. The direct cracking of methane was performed in 8mm quartz fixed bed reactor at atmospheric pressure and 500-700°C. The main results showed that the Al content of catalyst increases with the increasing amount of precipitant. The activity of catalyst increases with the increasing of catalyst?s acidity to the best possible point, and then increasing of acidity will reduce the activity of catalyst. Ni-Cu/4Al and Ni-Cu/11Al deactivated in a very short time hence produced fewer amount of nanocarbon, while Ni-Cu/15Al was active in a very long period. The most effective catalyst is Ni-Cu/22Al, which produced the biggest amount of nanocarbon (4.15 g C/g catalyst). Ni catalyst diameter has significant effect on reaction performances mainly methane conversion and product yield. A small Ni crystal size gave a high methane conversion, a fast deactivation and a low carbon yield. Large Ni particle diameter yielded a slow decomposition and low methane conversion. The highest methane conversion was produced by catalyst diameter of 4 nm and maximum yield of carbon of 4.08 g C/ g catalyst was achieved by 15.5 nm diameter of Ni catalyst."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
Depok: Pengkajian Energi UI, 2006
531.6 IND
Buku Teks SO  Universitas Indonesia Library
cover
Widodo Wahyu Purwanto
Depok: Fakultas Teknik Universitas Indonesia, 2000
06 Pur p-5
UI - Laporan Penelitian  Universitas Indonesia Library
<<   1 2   >>