Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Zidan Kharisma Adidarma
"Penelitian ini berfokus pada pengembangan sistem peringatan dini gempa bumi yang memanfaatkan arsitektur event-driven dan model deep-learning. Tujuannya adalah untuk memodelkan data seismik guna mendeteksi gelombang awal, hiposenter, magnitudo, dan kedalaman gempa. Penulis mengumpulkan data dari ratusan titik seismograf dan mengolahnya dengan model deep-learning untuk menghasilkan prediksi yang akurat. Sistem ini dirancang untuk memberikan visualisasi dan informasi yang mendukung Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dalam mendeteksi aspek-aspek kritis gempa. Selain itu, penulis mengembangkan sistem terdistribusi untuk mengelola permintaan dan pengolahan data skala besar dengan efisiensi tinggi. Antarmuka pemrograman aplikasi (API) juga disajikan untuk memungkinkan prediksi data yang mudah diakses dan dipahami. Terakhir, integrasi antara model machine learning dengan backend dan frontend dirancang untuk memberikan tampilan yang ramah pengguna. Penelitian ini berkontribusi dalam mengembangkan sistem peringatan dini gempa yang lebih canggih dan responsif, sehingga dapat meningkatkan kesiapan dan keamanan masyarakat dalam menghadapi bencana alam.
......This study focuses on the development of an earthquake early warning system utilizing event-driven architecture and deep-learning models. The aim is to model seismic data to detect initial waves, hypocenters, magnitude, and depth of earthquakes. Data from hundreds of seismograph points were collected and processed using deep-learning models to generate accurate predictions. The system is designed to provide visualizations and information to support the Meteorology, Climatology, and Geophysics Agency (BMKG) in detecting critical earthquake aspects. Additionally, a distributed system was developed to manage large-scale data requests and processing efficiently. An Application Programming Interface (API) is also presented for accessible and understandable data predictions. Finally, the integration of machine learning models with backend and frontend is designed to offer a user-friendly display. This research contributes to the development of a more sophisticated and responsive early warning system, enhancing public preparedness and safety in the face of natural disasters."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library