Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Yuliastuti
Abstrak :
Dalam rangka diversifikasi penggunaan energi, opsi energi nuklir telah masuk dalam peta bauran energi tahun 2025. Penentuan dan persiapan lokasi (atau sering disebut tapak) PLTN menjadi salah satu infrastruktur penting yang mempengaruhi perkembangan implementasi program PLTN. Daerah yang akan dikaji dalam penelitian ini terletak dalam wilayah Provinsi Banten. Daerah penelitian dapat dikatakan merupakan daerah yang relatif aktif secara kegempaan baik yang berhubungan dengan pensesaran maupun aktivitas vulkanik. Oleh karena itu, analisis pensesaran permukaan yang mencakup identifikasi dan karakterisasi sesar kapabel menjadi hal yang krusial untuk dikaji. Identifikasi sesar kapabel diperoleh melalui analisis komprehensif dari data citra satelit SPOT-5, data observasi geologi langsung dan data geofisika berupa data gravity, geolistrik dan magnetotellurik. Berdasarkan hasil analisis morfostruktural citra satelit dan observasi geologi langsung, di daerah penelitian terdapat sesar-sesar dengan karakteristik dan kronologi dari tua ke muda yaitu sesar mendatar dekstral berarah N1680E/860 dan mengindikasikan bahwa beberapa bidang sesarnya telah teraktifkan kembali menjadi sesar normal berarah N1780E/680; sesar normal berarah N3500 E/680; sesar normal berarah N2520E/700; dan sesar mendatar sinistral berarah N130-1400 E/720-820. Keberadaan sesar-sesar tersebut secara meyakinkan dikonfirmasi oleh hasil pemodelan dan inversi 2-dimensi gravity dan geolistrik. Berdasarkan hasil inversi 2-dimensi data magnetotellurik, keberadaan basement yang berumur Pre-Tersier berada pada kedalaman lebih dari 700 meter. Sesar-sesar yang telah teridentifikasi, ditinjau dari umur batuan yang dipotongnya yaitu lebih muda dari Middle Pliestocene, maka termasuk kategori sesar kapabel.
Abstract
In term of energy utilization diversification, nuclear energy has become an option in energy mix of 2025. Nuclear power plant site preparation is one of the primary issues in the development of nuclear energy program. The area of study is located in Banten Province which is seismically active either related to faulting or volcanic activity. Therefore, analysis of surface faulting which covered identification and characterization of capable faults were crucial to investigate further. Capable faults identification has been acquired through comprehensive analysis of SPOT-5 satellite imagery, geological field observation data and geophysical data which include gravity, geoelectric and magnetotelluric data. Based on morfostructural analysis of satellite imagery and geological field observation, it has been identified faults with characteristics and chronology namely dextral strike-slip faults N1680E/860 indicating a reactivation into normal faults N1780E/680; normal faults N3500 E/680; normal faults N2520E/700; and sinistral strike-slip faults N130-1400 E/720-820. The existence of these faults has been confirmed using 2-dimensional gravity and resistivity model and inversion. Besides that, based on 2-dimensional magnetotelluric data inversion the presence of Pre-Tertiary basement rock is indicated at depth of more than 700 meters. In term of the rock ages, the identified faults were younger than Middle Pleistocene. Accordingly, all the identified faults were categorized as capable faults.
Jakarta: Universitas Indonesia, 2012
T30981
UI - Tesis Open  Universitas Indonesia Library
cover
Novin Syahputra
Abstrak :
[ABSTRAK
Dalam penelitian ini, telah dibuat sebuah alat ukur yang dapat mengukur panjang gelombang cahaya. Dengan memanfaatkan fenomena sifat cahaya, penulis ingin mengetahui besar nilai panjang gelombang dan pola distribusi intensitas difraksi pada cahaya yang melewati kisi difraksi apakah sesuai dengan teori berdasarkan referensi. Sumber cahaya yang digunakan berupa sinar laser merah monokromatik dan polikromatik yang menghasilkan warna RGB serta lampu merkuri. Kisi difraksi dan sumber cahaya digerakkan dengan motor DC yang dilengkapi rotary encoder untuk menentukan posisinya. Semua pergerakan alat ini dikendalikan oleh program LabVIEW National Instrument dan pengolahan gambar dilakukan dengan program Vision Assistant. Hasil yang diperoleh dalam penelitian ini yaitu sumber cahaya merah monokromatik dengan kisi difraksi 300 garis/mm, panjang gelombang cahaya yang dihasilkan (640 - 676) nm dengan besar kesalahan relatif sebesar 0,32 %. Warna biru dengan kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (454 - 475) nm, dengan besar kesalahan relatif sebesar 0,31 %. Warna hijau dengan kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (524 - 547) nm, dengan besar kesalahan relatif sebesar 0,19 %. Warna merah dengan kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (654 - 697) nm, dengan besar kesalahan relatif sebesar 0,34 %. Semakin besar orde difraksi maka semakin lemah tingkat intensitas yang dihasilkan.
ABSTRACT
In this research, has created a measuring instrument which can measure light intensity distribution pattern. By exploiting phenomenon the nature of light, the author would like to know the value of wave l ength and the intensity distribution of the diffraction pattern on laser light that passes through a diffraction grating so it can be appropriate to reference theory. The source of light use red of monochromatic, polychromatic light which produce RGB color and mercury lamp. Grating diffraction and source of light are moved by DC motor with go forward and go back moving, which next by rotary encoder change distance become counter in partition. The all of these moving are manage by LabVIEW National Instrument and processing of image is executed of Vision Assistant program. The result of research is red monochromatic with width diffraction grating 300 lines/mm, is produced wave length of light (640 - 676) nm with relative error 0,32 %. For blue color with width diffraction grating 600 lines/mm, is produced wave length of light (454 - 475) nm with relative error 0,31 %. For green color with width diffraction grating 600 lines/mm, is produced wave length of light (524 - 547) nm with relative error 0,19 %. For red color with width diffraction grating 600 lines/mm, is produced wave length (654 - 697) nm with relative error 0,34 %. The greater order of diffraction then the less level of intensity was resulted.;In this research, has created a measuring instrument which can measure light intensity distribution pattern. By exploiting phenomenon the nature of light, the author would like to know the value of wave l ength and the intensity distribution of the diffraction pattern on laser light that passes through a diffraction grating so it can be appropriate to reference theory. The source of light use red of monochromatic, polychromatic light which produce RGB color and mercury lamp. Grating diffraction and source of light are moved by DC motor with go forward and go back moving, which next by rotary encoder change distance become counter in partition. The all of these moving are manage by LabVIEW National Instrument and processing of image is executed of Vision Assistant program. The result of research is red monochromatic with width diffraction grating 300 lines/mm, is produced wave length of light (640 - 676) nm with relative error 0,32 %. For blue color with width diffraction grating 600 lines/mm, is produced wave length of light (454 - 475) nm with relative error 0,31 %. For green color with width diffraction grating 600 lines/mm, is produced wave length of light (524 - 547) nm with relative error 0,19 %. For red color with width diffraction grating 600 lines/mm, is produced wave length (654 - 697) nm with relative error 0,34 %. The greater order of diffraction then the less level of intensity was resulted.;In this research, has created a measuring instrument which can measure light intensity distribution pattern. By exploiting phenomenon the nature of light, the author would like to know the value of wave l ength and the intensity distribution of the diffraction pattern on laser light that passes through a diffraction grating so it can be appropriate to reference theory. The source of light use red of monochromatic, polychromatic light which produce RGB color and mercury lamp. Grating diffraction and source of light are moved by DC motor with go forward and go back moving, which next by rotary encoder change distance become counter in partition. The all of these moving are manage by LabVIEW National Instrument and processing of image is executed of Vision Assistant program. The result of research is red monochromatic with width diffraction grating 300 lines/mm, is produced wave length of light (640 - 676) nm with relative error 0,32 %. For blue color with width diffraction grating 600 lines/mm, is produced wave length of light (454 - 475) nm with relative error 0,31 %. For green color with width diffraction grating 600 lines/mm, is produced wave length of light (524 - 547) nm with relative error 0,19 %. For red color with width diffraction grating 600 lines/mm, is produced wave length (654 - 697) nm with relative error 0,34 %. The greater order of diffraction then the less level of intensity was resulted., In this research, has created a measuring instrument which can measure light intensity distribution pattern. By exploiting phenomenon the nature of light, the author would like to know the value of wave l ength and the intensity distribution of the diffraction pattern on laser light that passes through a diffraction grating so it can be appropriate to reference theory. The source of light use red of monochromatic, polychromatic light which produce RGB color and mercury lamp. Grating diffraction and source of light are moved by DC motor with go forward and go back moving, which next by rotary encoder change distance become counter in partition. The all of these moving are manage by LabVIEW National Instrument and processing of image is executed of Vision Assistant program. The result of research is red monochromatic with width diffraction grating 300 lines/mm, is produced wave length of light (640 - 676) nm with relative error 0,32 %. For blue color with width diffraction grating 600 lines/mm, is produced wave length of light (454 - 475) nm with relative error 0,31 %. For green color with width diffraction grating 600 lines/mm, is produced wave length of light (524 - 547) nm with relative error 0,19 %. For red color with width diffraction grating 600 lines/mm, is produced wave length (654 - 697) nm with relative error 0,34 %. The greater order of diffraction then the less level of intensity was resulted.]
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43429
UI - Tesis Membership  Universitas Indonesia Library
cover
Novita fitriah
Abstrak :
Data seismik merupakan data yang secara alami tidak stasioner, karena mempunyai berbagai kandungan frekuensi dalam domain waktu. Salah satu atribut seismik yang bertujuan untuk mencirikan tanggap frekuensi yang tergantung waktu dari batuan dan reservoir bawah permukaan adalah dekomposisi waktu-frekuensi atau sering disebut sebagai dekomposisi spektral. Dengan dekomposisi spektral diharapkan lapisan-lapisan sedimen yang tidak tampak terpisah (berada di dalam satu wiggle wavelet) dengan menggunakan data seismik konvensional, akan tampak terpisah jelas. Salah satu metode dari dekomposisi spektral yaitu Continous Wavelet Transform (CWT). CWT adalah metoda dekomposisi waktu-frekuensi (time-frequency decomposition) yang ditujukan untuk mengkarakterisasi respon seismik pada frekuensi tertentu. Studi ini dilakukan dengan mengaplikasikan CWT pada wavelet dan frekuensi tertentu untuk melihat resolusi dari seismik .Wavelet yang digunakan pada studi ini adalah wavelet morlet, complex Gaussian-4, daubechies-5, coiflet-3 dan symlet-2 pada frekuensi 20 Hz, 40 Hz, 60 Hz dan 80 Hz (pada data sintetik 2D seismik) serta 40 Hz, 60 Hz, 80 Hz (pada data real 2D seismik) Dan hasil yang diperoleh dari penelitian ini menunjukkan bahwa pada data seismik sintetik 2D seismik dilakukan aplikasi CWT dengan time sample 3s dan 50 CDP trace menunjukkan bahwa semakin tinggi frekuensi maka pemisahan lapisan tipis yang dapat dilakukan semakin baik. Pada data seismik real 2D, pemisahan lapisan tipis pada batubara terjadi pada tuningfrequency 80 Hz dengan menggunakan wavelet symlet-2. ......Seismic data is naturally a non-stationary data, because it has many frequencies information in time domain. One of seismic attributes, which is used to characterize the frequency response as function of time and reservoir rock, is time-frequency decomposition or commonly known as spectral decomposition. By using spectral decomposition, it is expected that thin sedimentary layers (in one wiggle wavelet) can be separated rather than using conventionally seismic data. CWT is one of time-frequency decomposition method to decompose the seismic signal into single frequency. This study had been carried out by implementing CWT in certain wavelet and frequency to analyze the seismic resolution. The various wavelets had been used this study, they are morlet, complex Gaussian-4, daubechies- 5, coiflet-3 and symlet-2. The various frequencies of 20 hz, 40 Hz, 60 Hz dan 80 Hz frequency (for 2D synthetic seismic data) and 40 Hz, 60 Hz, 80 Hz frequency (for 2D real seismic data) are applied. The application of 2D synthetic seismic data that is implemented with CWT, 0.3 s time sample and 50 trace, shows that the use of higher frequency shows better separation. In addition, the application of 2D real seismic data shows that the best separation is in the frequency of 80 Hz with wavelet symlet-2.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
T26121
UI - Tesis Open  Universitas Indonesia Library