Ditemukan 295 dokumen yang sesuai dengan query
Rida Novrida
Abstrak :
Sistem matematika (R, +, X) merupakan lapangan real. Selanjutnya didefinisikan RE = R u { E = --00} dengan dua operasi biner ⨁ dan ⨂ dimana a⨁b = maksimum (a,b) dan a⨂b.= a+b, V a, b E RE. Sistem matematika ⨁ ⨂ dinamakan aljabar max-plus dan dinotasikan dengan . Dibandingkan dengan sifat lapangan tidak memiliki unsur balikan pada operasi ⨁. Untuk himpunan bilangan real kita mengenal vektor dan matriks yang elemen-elemennya bilangan real beserta operasi-operasi pada vektor dan matriks real. Begitu juga pada terdapat vektor dan matriks yang elemen-elemenya di beserta operasi-operasinya pada . Nilai eigen dan vektor eigen merupakan salah satu topik dalam aljabar yang dimiliki oleh matriks bujur sangkar. Matriks sirkulan merupakan slah satu tipe khusus dari matriks bujur sangkar, sehingga nilai eigen dan vektor eigen juga dimiliki oleh matriks sirkulan. Pada matriks bujur sangkar dapat direpresentasikan dalam bentuk graf yang dinamakan graf precedence dan dinotasikan dengan . dapat berupa graf tidak terhubung, graf terhubung atau graf terhubung kuat. Jika graf terhubung kuat maka matriks disebut irreducible. Pada penelitian ini akan dibahas bagaimana cara menentukan nilai eigen dan vektor eigen pada matriks dan matriks sirkulan yang irreducible dalam aljabar max-plus.
......System is a field of real numbers. Defined together with two binary operations ⨁ and ⨂ where ⨁ and ⨂ . System ⨁ ⨂ called max-plus algebra and denoted by . As compared to properties of field, there is no invers element for ⨁ in . In the set of real numbers there exist vectors and matrices which entries is real number with those operations. As in there exist vectors and matrices with entries is element of with those operations. Eigenvalues and eigenvectors are topics square matrix in algebra. Circulant matrix is a special types of square matrix, which also have eigenvalues and eigenvectors topics. Square matrix in can be represented as a graph called precedence graph denote . can be not connected graph, connected graph or strongly connected graph. If strongly connected then irreducible. In this thesis will be discussed how to get eigenvalues and eigenvectors for matrices and circulant matrix in the max-plus algebra.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31116
UI - Tesis Open Universitas Indonesia Library
Risdayanti
Abstrak :
The set of real number with addition and multiplication operation is said as field with a notation. At set of is given two binary operations that is and, are defined as follow: for all, and. The structure is called max-plus algebra, which denote as. The main different between and that is there is no invers for all element except the zero elemen. Futhermore are introduced extended of with define and at. In set of are given balance relation, denote, and relation whereas is equivalence relation since its compatible for generate equivalence class and quosien set. Clearly, the elements of set of is equivalence classes and than for all equivalenve class are assosiated with scalar or signed scalar dan in. By using definision of, and balance relation in for design the system of. In this research are performed properties of and than are defined the symmetrized max-plus algebra.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31307
UI - Tesis Open Universitas Indonesia Library
Sofwah Ahmad
Abstrak :
Aljabar merupakan suatu ruang vektor yang dilengkapi dengan suatu operator bilinier, yaitu suatu operator yang linier pada masing-masing argumennya. Suatu aljabar dikatakan sebagai aljabar simetris kiri jika asosiator dari sembarang ketiga vektornya simetrik pada kedua argumen pertamanya. Pada skripsi ini dibahas mengenai konstruksi aljabar simetris kiri melalui fungsi linier. Pertama-tama dibahas mengenai konstruksi aljabar secara umum dimana pendefinisian operator bilinier pada aljabar melibatkan fungsi-fungsi linier. Selanjutnya diberikan syarat bagi fungsi linier tersebut sedemikian sehingga aljabar yang telah dikonstruksi merupakan suatu aljabar simetris kiri.
Algebra is a vector space along with a bilinear operator, that is an operator which is linear on each of its argument. An algebra is called a left symmetric algebra if the associator of any three vectors of it is symmetric on its first two arguments. This skripsi discusses how to construct the left symmetric algebra using linear functions. First, this skripsi discusses how to construct a general algebra on which the bilinear operator defined on the algebra would involve linear functions. Then, some conditions for the linear functions will be given so that the constructed algebra would be a left symmetric algebra.
Depok: Universitas Indonesia, 2012
S44765
UI - Skripsi Membership Universitas Indonesia Library
Sudarsan Nanda
New Delhi: McGraw-Hill , 1989
512 NAN t
Buku Teks Universitas Indonesia Library
Streeter, James
New York: McGraw-Hill , 1993
512 STR b
Buku Teks Universitas Indonesia Library
Meserve, Bruce E.
New York: Dover, 1982
512 MES f
Buku Teks Universitas Indonesia Library
Mueller, Guntram
Boston : Addison-Wesley, 2000
512.13 MUE j
Buku Teks Universitas Indonesia Library
Barnett, Raymond A.
Boston: McGraw-Hill, 2000
512 BAR c
Buku Teks Universitas Indonesia Library
Dugopolski, Mark
Boston: McGraw-Hill, 2004
512.9 DUG a
Buku Teks Universitas Indonesia Library
Hutchison, Donald
Boston: McGraw-Hill, 2000
512.9 HUT e
Buku Teks Universitas Indonesia Library