Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Suryani
"[Pada tesis ini dibahas suatu model terorisme di Indonesia. Model matematika ini dikembangkan dengan membagi populasi manusia ke dalam empat kelas, yaitu kelas umum (G), kelas bibit (S), kelas teroris aktif (FA), dan kelas teroris yang ada di lembaga pemasyarakatan (FP ). Analisis dinamik model berupa kajian titik ekuilibrium seperti jaminan eksistensi, kestabilan dan bifurkasi dibahas dalam tesis ini. Analisis bifurkasi terhadap model yang telah dikonstruksi dilakukan dengan menggunakan software Matcont. Dari hasil kajian eksistensi titik ekuilibrium diperoleh tiga titik ekuilibrium, yaitu titik ekuilibrium bebas teroris E0 = (1; 0; 0), titik ekuilibrium teroris yang berupa E1 = (g1; s1; v1) dan E2 = (g2; s2; v2). Titik ekuilibrium E0 ada tanpa syarat, sedangkan E1 dan E2 ada dengan syarat tertentu. Berdasarkan hasil analisis kestabilan diperoleh E0 stabil asimtotis, E2 stabil, sedangkan E1 tak stabil. Simulasi numerik diberikan dalam beberapa kondisi dengan memanfaatkan software Mathematica 10.0.

In this thesis a model of terrorism in Indonesia is discussed. This model is developed by dividing the human population into four classes, namely general class (G), seed of terrorist class (S), active terrorist class (FA), and terrorist who are in a prison (FP ). Dynamical analysis such as study about equilibrium point such as existence, stability, and bifurcation are discussed in this thesis. A bifurcation analysis of the model is performed using software Matcont. From the results of the study of the existence of the equilibrium point, it is obtained three equilibrium points, namely terrorism-free equilibrium point E0 = (1; 0; 0), and terrorism equilibrium points E1 = (g1; s1; v1) and E2 = (g2; s2; v2). The equilibrium point E0 exists unconditionally, whereas E1 and E2 exist with certain conditions. From the analysis of stability equilibrium points obtained that E0 is asymptotically stable, E2 is stable, and E1 is unstable. Numerical simulation is given in some conditions by using software Mathematica 10.0., In this thesis a model of terrorism in Indonesia is discussed. This model is
developed by dividing the human population into four classes, namely general
class (G), seed of terrorist class (S), active terrorist class (FA), and terrorist who
are in a prison (FP ). Dynamical analysis such as study about equilibrium point
such as existence, stability, and bifurcation are discussed in this thesis. A
bifurcation analysis of the model is performed using software Matcont. From the
results of the study of the existence of the equilibrium point, it is obtained three
equilibrium points, namely terrorism-free equilibrium point E0 = (1; 0; 0), and
terrorism equilibrium points E1 = (g1; s1; v1) and E2 = (g2; s2; v2). The
equilibrium point E0 exists unconditionally, whereas E1 and E2 exist with
certain conditions. From the analysis of stability equilibrium points obtained that
E0 is asymptotically stable, E2 is stable, and E1 is unstable. Numerical
simulation is given in some conditions by using software Mathematica 10.0]"
Depok: Universitas Indonesia, 2015
T43548
UI - Tesis Membership  Universitas Indonesia Library
cover
Seydel, Rudiger
New York: Springer-Verlag, 1994
515.35 SEY p
Buku Teks  Universitas Indonesia Library
cover
Barus, Karina Fefayosa
"Tuberkulosis (TB) adalah salah satu penyakit menular yang disebabkan oleh bakteri Mycrobacterium Tuberculosis. Penyakit TB paling sering menyerang paru-paru, tetapi juga dapat menyerang organ tubuh lain seperti otak, ginjal, tulang belakang, hati, dan lain-lain. Penyakit TB merupakan salah satu dari sepuluh penyebab kematian teratas di dunia. Pada penelitian ini, dikonstruksi model matematika penyebaran penyakit TB dengan menggunakan model SEI (Susceptible, Exposed, Infectious). Dari model tersebut, dilakukan analisis secara analitik dan numerik. Kajian analitik yang dilakukan berupa eksistensi dan kestabilan titik keseimbangan, pembentukan basic reproduction number (R0) dan analisis bifurkasi dari model. Pada kajian analisis model, diperoleh titik keseimbangan bebas penyakit TB bersifat stabil asimtotik lokal ketika R0<1 dan tidak stabil ketika R0>1. Lebih jauh, titik keseimbangan endemik TB selalu ada ketika R0>1. Saat R0=1, model ini juga menunjukkan adanya fenomena bifurkasi mundur yang dijelaskan menggunakan teorema Castillo-Chavez dan Song. Pada kajian numerik berupa analisis sensitivitas dan elastisitas (R0) serta simulasi autonomous dilakukan untuk memberikan gambaran dan interpretasi terhadap hasil kajian analitik yang telah dilakukan.
......Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. TB disease most often attacks the lungs and can also attack other organs such as the brain, kidneys, spine, liver, etc. TB disease is one of the top ten causes of death globally. In this study, a mathematical model of the spread of TB disease was constructed using the SEI (Susceptible, Exposed, Infectious) model. From the model, analytical and numerical analysis is carried out. Analytical studies are carried out regarding the existence and stability of equilibrium points, the basic reproduction number (R0), and the bifurcation analysis of the model. The model analysis found that the TB disease free equilibrium point is locally asymptotically stable when R0<1 and unstable when R0>1. The TB endemic equilibrium point always exists when R0>1. When R0=1, this model also indicates the existence of a backward bifurcation phenomenon that is explained using the Castillo-Chavez and Song theorem. Numerical studies are carried out related to sensitivity and elasticity (R0) analysis and autonomous simulation of the model to provide an overview of the results of the analytical studies that have been carried out."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pada umumnya permasalahan dalam kehidupan sehari-hari jika dimodelkan dalam bentuk matematis adalah berupa sistem persamaan diferensial (PD) nonlinear. Hampir semua sistem tersebut merupakan sistem PD perturbasi, yaitu PD yang secara matematis tidak hanya bergantung pada variabel, tetapi juga bergantung pada parameter. Pada kondisi tertentu, adanya parameter dalam sistem dapat mengganggu dinamik dari sistem PD. Pada tugas akhir ini akan dibahas tentang analisa kualitatif dari sistem PD perturbasi tersebut, yaitu perubahan dinamik terhadap perubahan parameter dalam sistem. Perubahan dinamik dalam sistem PD dinamakan bifurkasi. Selanjutnya secara geometris, yaitu pada phase portrait dari PD ataupun sistem PD, dapat dilihat dinamik untuk setiap nilai parameter yang berbeda. Dari analisa tersebut, dapat diketahui pada kondisi mana suatu sistem PD perturbasi akan mengalami bifurkasi. Kata kunci: Bifurkasi, phase portrait, sistem persamaan diferensial, titik keseimbangan, stabilitas titik keseimbangan. "
Universitas Indonesia, 2006
S27618
UI - Skripsi Membership  Universitas Indonesia Library
cover
New York: CRC Press , 2000
620.001 CON
Buku Teks  Universitas Indonesia Library
cover
Kielhöfer, Hansjörg
"This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. "
New York: [Springer, ], 2012
e20419196
eBooks  Universitas Indonesia Library
cover
"The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots.
The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics."
Switzerland: Springer Cham, 2019
e20501721
eBooks  Universitas Indonesia Library
cover
Ma`da Fatimah
"Pada skripsi ini dibahas model matematika yang menggambarkan transmisi kebiasaan
merokok di antara populasi dengan mempertimbangkan efek dari kampanye media.
Model ini mempertimbangkan efek kampanye media untuk merangsang seseorang menjadi
non-perokok, baik sementara atau permanen. Model dibentuk dengan pendekatan
sistem persamaaan diferensial biasa non-linier berdimensi lima. Model yang dibangun
kemudian dianalisis secara analitik dan numerik. Kajian analitik yang dilakukan
adalah proses nondimensionalisasi, analisis eksistensi dan kestabilan titik keseimbangan,
menghitung nilai basic reproduction number (R0), dan analisis bifurkasi. Dihasilkan
bahwa titik keseimbangan bebas rokok (SFE) stabil secara lokal ketika (R0 < 1), sementara
itu selalu ada titik keseimbangan endemik ketika (R0 > 1). Model ini juga menunjukkan
adanya bifurkasi mundur pada saat R0 = 1. Kemudian, dilakukan kajian numerik
untuk mendukung hasil dari kajian analitik sebelumnya berupa analisis sensitivitas dan
elastisitas R0 dan simulasi autonomous. Beberapa simulasi numerik juga diberikan untuk
mendukung hasil dari kajian analitik
......In this thesis discussed a mathematical model which describe the transmission of smoking
habit among population considering the effect of the media campaign. This model
was taking into account the effect of the media campaign to stimulate an individual to be
a non-smoker, whether it’s temporary or permanent. The model is formed by the fivedimensional
nonlinear ordinary differential equation approach. The constructed model is
then analyzed analytically and numerically. The analytical study is a nondimensionalization
process, an analysis of the existence and stability of the equilibria, calculating the
value of textitbasic reproduction number (R0) and the bifurcation analysis. Generated
that smoking-free equilibrium(SFE) is locally stable when the basic reproduction number
(R0 < 1), while it always exists an endemic equilibrium point when R0 > 1. This
model also indicates the presence of backward bifurcation at R0 = 1. Sensitivity analysis
on R0 indicates the potential of a media campaign to help the government to reduce the
spread of smoking among the population. Some numerical simulations for supporting the
analytical is also given."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Govaerts, Willy J.F.
"Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Several features make this book unique. The first is the systematic use of bordered matrix methods in the numerical computation and continuation of various bifurcations. The second is a detailed treatment of bialternate matrix products and their Jordan structure. Govaerts discusses their use in the numerical methods for Hopf and related bifurcations. A third feature is a unified treatment of singularity theory, with and without a distinguished bifurcation parameter, from a numerical point of view. Finally, numerical methods for symmetry-breaking bifurcations are discussed in detail, up to the fundamental cases covered by the equivariant branching lemma."
Philadelphia : Society for Industrial and Applied Mathematics, 2000
e20442744
eBooks  Universitas Indonesia Library
cover
Sattinger, David H.
"A discussion of developments in the field of bifurcation theory, with emphasis on symmetry breaking and its interrelationship with singularity theory. The notions of universal solutions, symmetry breaking, and unfolding of singularities are discussed in detail. The book not only reviews recent mathematical developments but also provides a stimulus for further research in the field."
Philadelphia: Society for Industrial and Applied Mathematics, 1983
e20451058
eBooks  Universitas Indonesia Library