Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
cover
Sugiarti
Abstrak :
Salah satu minyak nabati yang potensial untuk dimanfaatkan sebagai bahan bakar alternatif adalah minyak jarak pagar (Jatropha curcas), karena memiliki komponen yang mirip dengan minyak bumi. Minyak jarak tidak dapat dikonsumsi karena beracun, sehingga tidak terjadi kompetisi antara penggunaannya sebagai bahan bakar atau bahan pangan. Namun, minyak jarak memiliki viskositas sepuluh kali lebih tinggi daripada solar, sehingga dibutuhkan metode yang tepat untuk menurunkan viskositasnya. Penelitian sebelumnya menggunakan metode perengkahan thermal pada tekanan 18 bar dengan sistem batch, menunjukkan bahwa hidrokarbon rantai panjang minyak jarak dapat direngkah menjadi hidrokarbon dengan rantai yang lebih pendek sehingga menghasilkan bio-oil dengan viskositas yang lebih rendah. Namun, viskositas bio-oil tersebut belum setara dengan solar komersial. Di samping itu, tekanan operasi yang tinggi sulit untuk diaplikasikan pada kendaraan bermotor. Agar sesuai dengan sistem yang ada pada kendaraan, maka pada penelitian ini akan dilakukan pirolisis minyak jarak fasa cair secara batch dengan sirkulasi. Pemilihan proses ini dilakukan juga untuk memperoleh kondisi optimum yang diperlukan agar minyak jarak dapat dipirolisis menjadi setara solar. Pirolisis minyak jarak dilakukan dengan menggunakan reaktor dari bahan stainless steel dengan ukuran diameter = 2,44 cm dan tinggi = 20 cm. Suhu reaksi 320, 340 dan 360 0C dan waktu reaksi 3,47; 4,79; 8,56 dan 13,89 menit. Produk yang diperoleh kemudian dianalisis densitas, viskositas, angka setana, FTIR dan GC ? MS. Hasil analisis menunjukkan viskositas minyak jarak mengalami penurunan dari 63,3052 cSt290C menjadi 56,4448 s/d 60,9578 cSt290C pada suhu 3200C . Hal ini menandakan bahwa hidrokarbon rantai panjang yang terdapat pada minyak jarak mengalami perengkahan. Selain itu viskositasnya juga mengalami peningkatan pada suhu 340 dan 3600C, yang menandakan telah terjadi reaksi propagasi. Hasil analisis densitas juga menunjukkan tren yang sama. Pada hasil analisis angka setana menunjukkan minyak jarak mengalami peningkatan dari 37 menjadi 41. Pirolisis pada penelitian ini merupakan reaksi orde 2 dengan konstanta laju reaksi 1,74 x 10-5 s/d 0,0053 min-1 dan energi aktivasi 4,40 x 105 s/d 4,49 x 105 J/grmol. Konversi tertinggi yang dihasilkan adalah sebesar 15,28%. Perhitungan simulasi untuk konversi pirolisis 100% diperoleh pada suhu 320, 340 dan 3600C dengan waktu reaksi berturut?turut 38.48, 35.6 dan 30.65 menit. Viskositas bio-oil yang dihasilkan pada kondisi optimum ini berturut ? turut adalah sebesar 34,17;37,16 dan 38,14 cSt(270C). Agar viskositas bio-oil yang dihasilkan pada kondisi optimum ini dapat setara dengan solar, maka sebelum masuk ke ruang pembakaran, bio-oil harus mengalami pemanasan awal pada suhu 230 s/d 2500C. Setelah mengalami pemanasan awal, diperoleh bio-oil dengan viskositas berturut ? turut 4,7; 5,67 dan 4,29 cSt(290C).
One of potential bio oil used for alternative fuel in Indonesia is Jatropha oil (Jatropha curcas), because it has similar components with crude oil. Jatropha oil cannot be consumed because poisonous, therefore no usage competition whether it be used as fuel or food. However, viscosity of jatropha oil is ten times higher than diesel fuel, thence a specific method is required to decrease its viscosity. Previous research was using gas phase - thermal cracking method at high pressure (18 bar) batch system, showed that long chain hydrocarbon of jatropha oil can be cracked into shorter chain hydrocarbon which produced lower viscosity of biooil. The viscosity of bio-oil produced has equal grade with commercial diesel fuel if heated up to 1000C, but application of high pressure system (18 bar) on vehicle is difficult. In order to achieve the suitable fuel for vehicle application, this research will conduct pyrolysis of liquid phase jatropha oil in batch system with circulation. This process is selected to provide required optimum condition for pyrolysis process in reactor. Pyrolysis process is performed in stainless steel reactor with 2,44 cm diameter and 20 cm height. Reaction is carried out at temperature 320, 340 and 360 0C within 3.47, 4.79, 8.56 and 13.89 minutes of reaction time. Reaction product will then be analyzed with density, viscosity, cetane number, FTIR and GC ? MS. Viscosity product is have decrease from 63.3052 cSt290C to 56.4448 s/d 60.9578 cSt290C in 3200C. Its mean the hydrocarbon longchain is cracking. Expect to the viscosity is increase in 340 and 3600C, its mean is the radical reaction is begin. Density is the same tren. Cetane number is increase from 37 to 41. The maximum convertion is 15.28% is the required in 3200C and 3.47 minutes. To obtained the convertion 100%, pyrolysis in 320, 340 and 3600C with time pyrolysis is 38,48; 35,6 and 30,65 minutes. The obtained viscosity in optimum condition is 34,17; 37,16 and 38,14 cSt(290C). to get the viscosity is diesel like fuel, bio-oil is heated until 2500C. after heating, bio-oil viscosity is 4,7; 5,67 and 4,29 cSt(290C).
Depok: Fakultas Teknik Universitas Indonesia, 2010
T30805
UI - Tesis Open  Universitas Indonesia Library
cover
Miranda Meidistira
Abstrak :
Sampah daun dapat dikonversi menjadi produk yang lebih berguna dengan menggunakan beberapa proses, salah satu prosesnya adalah menggunakan proses pirolisis. Proses pirolisis dapat dilakukan dengan membutuhkan beberapa parameter, yaitu bahan baku, suhu, waktu tinggal, dan juga laju pemanasan. Pada proses pirolisis, biomassa mengalami proses penyusutan. Pada penelitian ini, variabel yang digunakan adalah suhu, laju alir gas, dan rasio kombinasi katalis dengan tujuan melihat hubungan variabel-variabel tersebut dengan proses penyusutan dan produk pirolisis yang dihasilkan. Proses pirolisis menghasilkan produk berupa produk cair, gas, dan padat. Dari hasil penelitian, produk padatan kemudian dikarakterisasi menggunakan analisis Fourier Transform Infrared Spectroscopy (FTIR) dan dihasilkan bahwa terdapat beberapa perbedaan yang terdapat pada padatan pirolisis katalitik dan non-katalitik dan terdapat perbedaan intensitas pada peak-peak spektra yang menunjukan adanya penyusutan dari struktur penyusun biomassa. Produk cair yang terbentuk dianalisis dengan menggunakan alat Gas Chromatography – Mass Spectroscopy (GC-MS) dan didapatkan bahwa produk cair memiliki kandungan oksigenat dan non-oksigenat di dalamnya. Kandungan oksigenat dan non-oksigenat yang berada dalam produk cair dilakukan dengan menggunakan bantuan katalis ZSM-5 (Zeolite Socony Mobil-5) dan YSZ (Yttria Stabilized Zirconia). Katalis ZSM-5 berfungsi sebagai katalis asam yang dapat meningkatkan kandungan hidrokarbon dan katalis YSZ berfungsi untuk meningkatkan produksi non-oksigenat pada produk bio-oil yang dihasilkan. Produk distribusi yang dihasikan dengan proses katalitik memiliki produk distribusi yang lebih beragam. Penambahan katalis juga menurunkan energi aktivasi yang digunakan sebesar 5,41%.
Leaf waste can be converted into more useful products by using several processes, one of which is using a pyrolysis process. The pyrolysis process can be carried out by requiring several parameters, namely raw material, temperature, residence time, and also the rate of heating. In the pyrolysis process, biomass undergoes a shrinkage process. In this study, the variables used are temperature, gas flow rate, and catalyst combination ratio with the aim of seeing the relationship of these variables with the shrinkage process and the resulting pyrolysis product. The pyrolysis process produces products in the form of liquid, gas and solid products. From the results of the study, solid products were then characterized using Fourier Transform Infrared Spectroscopy (FTIR) analysis and it was found that there were some differences found in catalytic and non-catalytic pyrolysis solids and there were differences in intensity in the spectral peaks that showed shrinkage of biomass. The liquid product formed was analyzed using the Gas Chromatography - Mass Spectroscopy (GC-MS) tool and it was found that the liquid product contained oxygenate and non-oxygenate in it. Oxygenate and non-oxygenate content in liquid products is increased by using ZSM-5 catalysts (Zeolite Socony Mobil-5) and YSZ (Yttria Stabilized Zirconia). ZSM-5 catalyst serves as an acid catalyst that can increase the hydrocarbon content and the YSZ catalyst serves to increase the production of non-oxygenate in the resulting bio-oil product. Distribution products produced by catalytic processes have a more diverse distribution of products. The addition of catalysts also reduced the activation energy used by 5.41%.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ellen Dawitri
Abstrak :
ABSTRAK
Tembakau diketahui memiliki potensi yang besar sebagai pestisida atau pengusir serangga. Anti nyamuk yang beredar di masyarakat, menggunakan zat aktif berupa DEET, zat kimia sintetik yang dapat terserap dalam tubuh, dan menyebabkan gangguan sensorik dan motorik, serta keracunan sistemik. Penelitian ini mengkaji lebih lanjut potensi anti serangga pada daun tembakau. Bio-oil diesktrak dari daun tembakau dengan metode fast pyrolisis pada suhu 500oC, 600oC, dan 700oC untuk mengetahui pengaruh suhu pada kandungannya. Bio-oil hasil pirolisis kemudian dibuat menjadi campuran anti nyamuk berbasis biomassa. Uji kandungan bio-oil dilakukan dengan GC-MS, sementara anti nyamuk diujikan langsung pada manusia untuk mengetahui efeknya pada kulit serta efektivitasnya dalam mengusir nyamuk. Yield bio-oil optimum ditemukan pada suhu 600oC sebesar 24%. Senyawa aktif anti nyamuk yang diperoleh pada hasil pirolisis yaitu nikotin, d-Limonene, indole, dan pyridine. Bio-oil ditambahkan ke dalam anti nyamuk sebagai zat aktif dengan konsentrasi 0%; 0,5%; 1,5%; dan 3%. Anti nyamuk yang diuji ke nyamuk menunjukkan hasil yang memuaskan, dimana selain tidak menimbulkan dampak pada kulit manusia, efektifitas anti nyamuk dari berbagai konsentrasi berturut-turut adalah 38,09%; 45,82%; 46,41%; dan 57,07%.
ABSTRACT
Tobacco is known to have a big potential as a pesticide or repellent. Mosquito repellent which is used by public, contain DEET as its active compound, a synthetic substance which can be absorbed to human body and cause some systemic poisoning. This research study further potential of repellent on tobacco leaves. Bio-oil was extracted from tobacco leaves using fast pyrolysis at temperature of 500oC, 600oC, and 700oC to evaluate the effect of temperature. Bio-oil was then made into bio-mass based repellent. Bio-oil was characterized using GC-MS, while the repellent was tested directly to human to evaluate the effects on the skin and the effectivity as a repellent. Optimum yield of bio-oil was found on 600oC at 24%. The active compund of repellent found was nicotine, d-Limonene, indole, and pyridine. Bio-oil was added to repellent mixture as active compund with different concentration (0%; 0,5%; 1,5%; and 3%). Repellent tested showed a desired result, where not only the repellent didn?t take effect on human skin, the effectivity of each concentration was 38,09%; 45,82%; 46,41%; and 57,07%, respectively.
Depok: [Fakultas Teknik Universitas Indonesia, Fakultas Teknik Universitas Indonesia], 2014
T41810
UI - Tesis Membership  Universitas Indonesia Library
cover
Anissa Clarita
Abstrak :
Minyak kelapa sawit memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena kandungan trigliserida. Indonesia merupakan negara produsen kelapa sawit terbesar di dunia. Selama ini minyak kelapa sawit belum dimanfaatkan secara maksimal khususnya sebagai bahan baku industri. Padahal minyak kelapa sawit dapat dimanfaatkan sebagai energi terbarukan melalui proses slow co-pyrolysis. Dalam penelitian ini, trigliserida yang digunakan dari minyak goreng kelapa sawit. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Tujuan penelitian ini adalah untuk mengetahui pengaruh laju oenambahan plastik polipropilena terhadap yield dan kualitas bio-oil hasil slow co-pyrolysis minyak kelapa sawit. Penelitian ini dilakukan dalam reactor tabung berpengaduk pada suhu 550oC, heating rate 5oC/menit, kecepatan pengaduk 65 RPM dengan laju alir gas nitrogen 550 mL/min. Variasi yang dilakukan berupa penambahan jumlah % massa plastik polipropilena yang akan mempengaruhi yield dan komposisi dari bio-oil yang dihasilkan. Bio-oil dikarakterisasi dengan menggunakan GC-MS, dan FTIR. Efek sinergetik pada pirolisis PP-trigliserida tidak terjadi, sedangkan pada pirolisis PP-bonggol jagung terjadi saat komposisi PP 50% dan 75%. Bio-oil optimum dihasilkan pada komposisi PP 75% baik pada pirolisis PP-trigliserida dan PP-bonggol jagung.
Palm oil has high potential to be developed into bio-oil because of the content of triglycerides. Indonesia is the largest palm oil producer in the world. So far, palm oil has not been fully utilized, especially as an industrial raw material. Even though palm oil can be used as renewable energy through the slow co-pyrolysis process. In this study, the the triglyceride is from palm oil cooking oil. In addition, plastic waste is also abundant in Indonesia, especially polypropylene plastic. The purpose of this study was to determine the effect of the rate of addition of polypropylene plastic on the yield and quality of bio-oil produced by slow co-pyrolysis of palm oil. This research was conducted in a stirred tube reactor at a temperature of 550oC, heating rate of 5oC / minute, stirrer speed of 65 RPM with a nitrogen gas flow rate of 550 mL / min. The variation is in the form of increasing the mass% of polypropylene plastic which will affect the yield and composition of the bio-oil produced. Bio-oil is characterized by using GC-MS, and FTIR. The synergetic effect on PP-triglyceride pyrolysis did not occur, whereas in the pyrolysis of PP-corn hump occurred when the composition of PP was 50% and 75%. Optimum Bio-oil was produced in the composition of PP 75% both in PP-triglyceride pyrolysis and PP-corncobs.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desi Riana Saputri
Abstrak :
ABSTRAK
Produksi biohidrogen melalui reformasi kukus bio-oil berperan penting dalam perkembangan energi terbarukan yang berasal dari biomassa dalam memproduksi bahan bakar yang bersih. Walaupun demikian, kehadiran coke dan rendahnya konversi karbon merupakan permasalahan yang sering terjadi. Sehingga, penelitian ini bertujuan untuk mengurangi pembentukan deposit karbon dan meningkatkan konversi karbon dengan menggunakan core shell. Core shell akan meningkatkan luas permukaan, interaksi terhadap support katalis dan aktivitas katalitiknya. Core shell Ni/CaO-?-Al2O3@Ru disintesis dengan metode mikroemulsi dalam sistem larutan CTAB/n-heksanol/sikloheksana/aquades. Katalis dikarakterisasi dengan menggunakan XRD, BET, FESEM-EDS dan TEM. Fraksi aqueous bio-oil dianalisis menggunakan GC-MS. Hasil penelitian ini menunjukan bahwa yield hidrogen tertinggi dihasilkan dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru adalah sebesar 16,34 pada menit ke-10. Jumlah deposit karbon terendah diperoleh dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru yaitu 1,234 g. Konversi karbon dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru meningkat 11,27 dibandingkan menggunakan Ni/CaO-?-Al2O3. Produksi yield hidrogen dengan menggunakan core shell Ni/CaO-?-Al2O3@Ru meningkat sebesar 4,56 dibandingkan dengan menggunakan Ni/CaO-?-Al2O3. Sehingga, core shell Ni/CaO-?-Al2O3@Ru lebih baik digunakan untuk produksi hidrogen dan mengurangi deposit karbon melalui reformasi kukus bio-oil dibandingkan dengan katalis Ni/CaO-?-Al2O3.
ABSTRACT
Biohydrogen production through bio oil steam reforming plays an important role in the development of renewable hydrogen from biomass to produce the cleanest fuel. However, the existence of coke and low carbon conversion are problems that have been found in some studies. The purposes of this study were to reduce coke formation and to enhance carbon conversion by using core shell. Core shell can improve surface area, support interaction and its catalytic activity. Ni CaO Al2O3 Ru core shell catalysts were prepared by CTAB n hexanol cyclohexane water micro emulsion system. The catalysts were characterized by means XRD, BET, FESEM EDS and TEM. Bio oil aqueous fraction was analyzed by using GC MS. Based on experiment, the highest hydrogen yield was produced by using Ni CaO Al2O3 Ru core shell was 16.34 in minute 10. The lowest coke deposit production by using Ni CaO Al2O3 Ru core shell was 0.1234 g. Gas product carbon conversion by using core shell Ni CaO Al2O3 Ru enhanced more 11.27 than using Ni CaO Al2O3. Hydrogen yield production by using Ni CaO Al2O3 Ru core shell enhanced more 4.56 than using Ni CaO Al2O3 catalyst. The result showed that the effect of Ni CaO Al2O3 Ru core shell was more efficient for hydrogen production and to decrease coke deposit through steam reforming bio oil compared to Ni CaO Al2O3 catalyst.
2017
T49740
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
This research has the effort to develop catalyst for steam reforming of bio oil. The bio oil is liquid product that iv produced _from biomass pyrolysis. The reforming of bio oil produces hydrogen gas. The main challenge in reforming of organic compound especially aromatic, in bio oil as phenol, is carbon formation at the catalyst surface resulted in uncomplete reaction. The catalyst formulation resulted is expected to have high resistance to catalyst deactivation because of carbon formation. Beside that, it is expected too to have high stability and activity, compared to commercial nickel based catalyst. For those purposes, research of steam reforming of m-cresol in bench scale has been done. m-cresol is one of phenol compounds in bio oil, that has stable properties, difficult to react and disturb the catalyst activity. The catalyst formulation used is Ru-Ni/MgO.La;O3.Al2O3 mixture. This research has succeed to develop catalyst of reforming from Ni-Ru metal combination that having the good stability and activity to reform m-cresol. The best catalyst composition resulted is 2%Ru-15%Ni. In Ni and Ru catalyst combination, Ni catalyst is the mainly active component in reforming of oxygenated aromatic compound in bio oil The Ru catalyst function is to increase Ni metal dispersion on support, by then increasing the catalyst stability.
Jurnal Teknologi, Vol. 20 (3) Maret 2006 : 215-220, 2006
JUTE-20-3-Sep2006-215
Artikel Jurnal  Universitas Indonesia Library