Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12 dokumen yang sesuai dengan query
cover
"Considering that there has been a constant high rate of growth in the demand for ADO (Automotive Diesel Oil) in the Indonesian liquid fuel mix, particularly in the transport sector, and realizing that import of ADO is the highest among liquid fuel imports, due to constraints in domestic production, a preliminary assessment has been undertaken on the possibility of subtituting or complementing the supply for ADO with biodiesel, by way of converting oil extracted from Jatropha curcas. Jatropha curcas oil has been chosen as the base material since (a) its physico-chemical properties is highly suitable to be used as feedstock for the production of biodiesel, (b) it is not an edible oil, and (c) the planting of Jatropha curcas can be undertaken in arid lands, thereby beneficial effects can be obtained, as the massive planting wood result in recovering such lands into productive uses."
JIUPH 4:8 (2001)
Artikel Jurnal  Universitas Indonesia Library
cover
Giviani Puspita Dewi
"Biodiesel merupakan salah satu energi terbarukan yang memiliki kelemahan mudah teroksidasi. Ketidakstabilan oksidasi pada biodiesel dapat menurunkan kualitas biodiesel. Oksidasi biodiesel dapat dicegah dengan melakukan penambahan aditif antioksidan berupa senyawa fenolik seperti pyrogallol. Kelarutan pyrogallol di dalam biodiesel yang rendah dapat ditingkatkan dengan melakukan subtitusi atom hidrogen pada cincin benzena pyrogallol dengan senyawa hidrokarbon tidak jenuh seperti metil linoleat. Katalis 2,2-diphenyl-1-picrylhydrazyl (DPPH) dibutuhkan untuk mereaksikan pyrogallol dan metil linoleat karena dapat larut dalam keduanya. Pada penelitian sebelumnya digunakan metil linoleat murni yang tidak ekonomis jika diaplikasikan dalam skala industri. Pada penelitian ini, biodiesel minyak kanola dengan kandungan metil linoleat sebesar 11,23% digunakan untuk mensintesis turunan pyrogallol dengan rasio 10 ml biodiesel, 5 ml DPPH, dan 5 ml pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), dan Liquid Chromatography-Mass Spectrometry (LCMS/MS) digunakan untuk mengetahui keberadaan senyawa turunan pyrogallol. Reaksi menghasilkan spot baru pada uji TLC yang menunjukkan perbedaan polaritas antara pyrogallol dan senyawa turunan pyrogallol yang terbentuk. Uji FTIR menunjukkan terbentuknya senyawa turunan pyrogallol yang ditunjukkan dengan pergeseran peak sebesar 3,73 cm-1. LCMS/MS menunjukkan berat molekul senyawa turunan pyrogallol yang terbentuk yang terdiri atas pyrogallol dan metil linoleat. Hasil uji UV-Vis menunjukkan bahwa senyawa turunan pyrogallol memiliki kelarutan yang lebih baik dalam biodiesel dibandingkan dengan pyrogallol murni. Kinerja antioksidan dalam biodiesel diukur berdasarkan bilangan iodin dan periode induksi. Penambahan antioksidan senyawa turunan pyrogallol pada biodiesel dapat meningkatkan periode induksi sebesar 0,16 - 0,71 jam untuk konsentrasi 1000 - 2000 ppm serta menghambat penurunan bilangan iodin dengan slope sebesar -1,0 sampai dengan -0,8.

Biodiesel is renewable energy which has the disadvantage of being easily oxidized. Oxidation instability in biodiesel can reduce the quality of biodiesel. Biodiesel oxidation can be prevented by adding antioxidant additives in the form of phenolic compounds such as pyrogallol. The solubility of pyrogallol in biodiesel can be increased by substitution of hydrogen atoms in the benzene ring pyrogallol with unsaturated hydrocarbon compounds such as methyl linoleate. 2,2-diphenyl-1-picrylhydrazyl (DPPH) catalyst is needed to react pyrogallol and methyl linoleate because it can dissolve in both. In previous studies, pure methyl linoleate was used which was not economical if applied on an industrial scale. In this study, biodiesel of canola oil with a methyl linoleic content of 11.23% was used to synthesize pyrogallol derivatives with a ratio of 10 ml of biodiesel, 5 ml of DPPH, and 5 ml of pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and Liquid Chromatography-Mass Spectrometry (LCMS / MS) are used to determine the presence of pyrogallol-derived compounds. The reaction produces a new spot in the TLC test which shows the difference in polarity between pyrogallol and pyrogallol derivative compounds formed. FTIR test shows the formation of pyrogallol derivatives which is indicated by a peak shift of 3.73 cm-1. LCMS / MS shows the molecular weight of pyrogallol derivative compounds formed consisting of pyrogallol and methyl linoleate. UV-Vis test results showed that pyrogallol derivative compounds had better solubility in biodiesel compared to pure pyrogallol. The performance of antioxidants in biodiesel is measured based on the iodine number and induction period. The addition of antioxidant pyrogallol derivatives to biodiesel can increase the induction period by 0.16 - 0.71 hours for a concentration of 1000 - 2000 ppm and inhibit the decline in iodine numbers with slopes of -1.0 to -0.8.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Wayan Susila
"The performance test of CI engine which uses biodiesel fuel from vegetable oils and its blends with diesel fuel is essential to be carried out. This research investigates the quality of rubber seed oil methyl ester (RSOME) which is produced via catalytic method dry wash system which uses magnesol (magnesium silicate) as absorbent based on Indonesian Biodiesel Forum (FBI) standard in 2005 and the performance of CI engine, which uses its blends with diesel fuel (B-10, B-20, and B-30). The best engine performance is then compared with RSOME which is produced via non-catalytic method, namely, superheated methanol high temperature atmospheric pressure and diesel fuel (B-0). The engine test shows that B-20 produces the best engine performance at 2550 rpm. Compared to RSOME non-catalytic method and diesel fuel, RSOME catalytic method and non-catalytic method yield the same effective power, whereas diesel fuel is lower than both methods. The engine which uses RSOME non-catalytic method needs the same specific fuel consumption as diesel fuel, but a bit more than catalytic method. The thermal efficiency of RSOME non-catalytic method is higher than catalytic method and diesel fuel, but catalytic method has lower efficiency than diesel fuel. The emission of non-catalytic method is the most eco-friendly, catalytic method is the next, and diesel fuel is the one with the highest emission levels."
Depok: Faculty of Engineering, Universitas Indonesia, 2012
UI-IJTECH 3:1 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Mochamad Faizal Irsyad Satria
"Rendahnya stabilitas oksidasi pada biodiesel atau FAME (Fatty Acid Methyl Ester) dapat menyebabkan biodiesel dapat terdegradasi sehingga membentuk deposit dan endapan pada tangki. Biodiesel teroksidasi disebabkan karena terdapat senyawa dengan ikatan tak jenuh. Untuk itu partial hydrogenation bertujuan untuk memecah ikatan tak jenuh pada FAME yang merupakan komponen penentu dari sifat oksidatif biodiesel. Pada proses partial hydrogenation percobaan ini, digunakan bantuan katalis Nickel alumina (Ni/Al2O3) Proses hidrogenasi parsial dilakukan dengan sistem reaktor autoclave berpengaduk dengan memvariasikan persentase berat katalis terhadap massa umpan dan suhu yang berbeda, yaitu sebesar 5%, 10%, dan 15% dari massa umpan dan suhu operasi sebesar 110 dan 120˚C. Hasil yang diperoleh pada akhir percobaan adalah Hydrogenated FAME (H-FAME) atau FAME yang telah dihidrogenasi parsial dengan berat katalis sebesar 15% dari berat umpan dan suhu 120 ˚C memberikan perolehan paling optimal dengan turunnya bilangan iodin dari 31,40 g-I2 /100g menjadi 20,01 g-I2 /100g; turunnya bilangan asam dari 0,6 mg KOH/g minyak menjadi 0,38 mg KOH/g minyak. Turunnya bilangan iodin dan bilangan asam mengindikasikan terjadinya kenaikan stabilitas oksidasi dan konversi dari komponen jenuhnya. Hal ini dapat dilihat dari naiknya stabilitas oksidasi dari 3,85 jam menjadi 4,93 jam; dan hasil konversi dengan komponen metil stearate dan metil oleat sebesar 14% dan 4%

The low oxidation stability of biodiesel or FAME (Fatty Acid Methyl Ester) can cause biodiesel to be degraded to form deposits and deposits in the tank. Oxidized biodiesel is caused by the presence of compounds with unsaturated bonds. For this reason, partial hydrogenation aims to break the unsaturated bonds in FAME which is a determining component of the oxidative properties of biodiesel. In this experimental partial hydrogenation process, a Nickel alumina (Ni/Al2O3) catalyst was used. The partial hydrogenation process was carried out with a stirred autoclave reactor system by varying the percentage of catalyst weight to the feed mass and different temperatures, namely 5%, 10%, and 15%. of feed mass and operating temperature of 110 and 120˚C. The results obtained at the end of the experiment are Hydrogenated FAME (H-FAME) or partially hydrogenated FAME with a catalyst weight of 15% of the weight of the feed and a temperature of 120 C giving the most optimal gain with a decrease in the iodine number from 31.40 g-I2 / 100g to 20.01 g-I2 /100g; the decrease in acid number from 0.6 mg KOH/g oil to 0.38 mg KOH/g oil. The decrease in the iodine number and the acid number indicates an increase in the oxidation stability and conversion of the saturated component. This can be seen from the increase in oxidation stability from 3.85 hours to 4.93 hours, and the conversion results with methyl stearate and methyl oleate components of 14% and 4%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ihsan Sofyan
"Biodiesel merupakan salah satu material biomassa atau energi terbarukan, yang memiliki banyak jenis salah satunya adalah CME (Coconut Methyl Ester) yang diperlukan untuk mengurangi pemanasan global. Pada penelitian ini telah dilakukan sintesis produk CME dengan katalis organik yang dinamakan katalis ASK dan ASK Alkali, dimana penggunaan katalis ASK Alkali dibatasi hanya untuk variasi data yield. Karakterisasi material meliputi pengujian dengan dengan FTIR, GC, Fuel Property Test, XRF, dan XRD. Pada penelitian ini pula data eksperimental diperbandingkan dengan hasil permodelan kinetika reaksi Avrami sebagai sebuah studi yang kompeherensif. Yield CME yang dihasilkan dari transesterifikasi yaitu 15-19,5% pasca penggunaan katalis ASK yang terdiri dari fasa amorf dan fasa kristalin ClK0.8Na0.2. Sedangkan penggunaan varian katalis ASK Alkali telah meningkatkan yield sebesar 23%. Kemudian karakterisasi akhir produk yaitu uji fisis yang menghasilkan angka densitas dan viskositas produk yang lebih rendah dibandingkan produk biodiesel lain berbahan minyak kelapa sawit. Data yield CME yang diperoleh digunakan untuk membangun persamaan kinetika reaksi , dengan nilai n = 1 dan nilai k’ untuk suhu 50oC, 60oC, dan 70oC berturut-turut sebesar 0,202, 0,205, dan 0,207, serta energi aktivasi minimum Q = 1,1 kJ/mol, yang dapat menentukan waktu reaksi pada temperatur yang ditentukan untuk mencapai nilai yield tertentu.

Biodiesel is a renewable energy or biomass material, which has many types for example CME (Coconut Methyl Ester), which is needed to reduce global warming. In this research, a synthesis of CME products was carried out with organic catalysts called ASK and ASK Alkali catalysts, where the use of ASK Alkali catalyst was limited to yield data variations. Material characterization includes FTIR, GC, Fuel Property Test, XRF, and XRD. In this study, experimental datas were also compared with the results of Avrami's kinetics modeling as a comprehensive study. The yield of CME from transesterification was 15-19,5% after the use of ASK catalyst which consisted of an amorphous and a ClK0.8Na0.2 crystalline phase. Meanwhile, using the ASK Alkali catalyst had increased the yield by 23%. Then the final characterization was a physical test which produced lower density and viscosity compared to other biodiesel made from palm oil. The CME yield data obtained were used to build the kinetics equation with the value of n = 1 and the value of k' for temperatures of 50oC, 60oC, and 70oC were 0,202, 0,205, and 0,207, with a minimum activation energy Q = 1.1 kJ/mol, which can determine the reaction time at a specified temperature to achieve a certain yield value."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Khaliq Fikri
"Dalam konversi minyak kelapa sawit menjadi biodisel, minyak kelapa sawit melalui proses transesterifikasi dengan methanol untuk membnentuk biodisel dan gliserol. Namun utilitas gliserol tidak dapat dimaksimalkan dikarenakan gliserol memiliki sedikit kegunaan dibandingkan dengan biodisel. Gliserol dapat di sintesis untuk meningkatkan nilai ekonomisnya membentuk Gliserol Monostearat (GMS) sebagai agen pengemulsi. Dalam proses esterifikasi gliserol, terdapat beberapa variabel yang mempengaruhi hasil akhir seperti temperatur, dan jenis katalis yang digunakan yaitu NaOH. Riset ini dilaksanakan nutuk memahami pengaruh temperature dan jumlah katalis untuk memproduksi produk GMS dan kemampuannya untuk mengemulsi. Proses sintesis dimulai dengan mereaksikan gliserol dengan asam stearat menggunakan NaOH sebagai katalis dan variasinya jumlah 4%, 7%, dan 9%. Temperatur yang digunakan untuk reaksi menggunakan variasi 210⁰C, 220⁰C, dan 230⁰C. Untuk uji performa, produk GMS akan di bandingkan dengan agen pengemulsi komersil yaitu lecithin dan uji performa dinilai berdasarkan variasi jumlah 1.0, 2.0, dan 3.0 grams per agen pengemulsi untuk mencampurkan air dan minyak dan waktu yang dibutuhkan untuk kedua fasa terpisah Kembali. Dari riset ini dapat di konklusikan bahwa GMS dapat disintesiskan melalui observasi proses esterifikasi, membandingkan hasil FTIR, dan properti fisik produk. Hasil GMS secara kualitatif dan quantitatif dapat terbaik ditemukan pada temperature 220⁰C dan jumlah katalis NaOH 7%. GMS juga dapat mengemulsi air dan minyak, dan dibandingkan dengan lecithin, GMS dapat mengemulsi campuran air dan minyak dari lemak hewan lebih baik.

In the reaction to convert crude palm oil into biodiesel, it undergoes the process of transesterification of the triglycerides with methanol to form biodiesel and glycerol. The utility of glycerol is not maximized since glycerol itself is considered to have less use than its primary product of biodiesel. Glycerol itself can be synthesized further to increase its economic value, to the form of Glycerol Monostearate (GMS) as an emulsifying agent. Through the process of esterification of glycerol, there are many variables at play including the operating condition of temperature, and using the catalyst of NaOH. This research is conducted to understand the effect of temperature and amount of catalyst on the production of GMS product and its ability as an emulsifier. The process of synthesis occurs with reacting glycerol and stearic acid using NaOH as a catalyst with the variation amount of 4%, 7%, and 9%. The temperature for the operating system occurs with the variation of 210⁰C, 220⁰C, and 230⁰C. For the performance test, the GMS product is compared with a commercial emulsifier, lecithin and is tested based on the amount of 1.0, 2.0, and 3.0 grams per emulsifier used to the time after oil and water mix and how long will it take until both phases separate. From this research, the conclusion of the synthesis for GMS can be done through observation of the process, the comparison of FTIR analysis, and the product physical properties. The temperature at 220°C and amount of 7% catalyst gives the highest yield, low temperature and amount of NaOH will affect the quality of the yield and high temperature and amount of NaOH will affect the quality and quantity of the yield. The product GMS can emulsify water and oil, and in comparison, with lecithin, the product itself is better at the emulsification of water to animal fat oil."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiffany Berliana
"Kandungan sulfur yang terdapat di dalam Biosolar B-30 menyebabkan kerugian karena memperpendek umur mesin kendaraan. Untuk mengatasi hal tersebut, salah satu proses untuk menurunkan kadar sulfur adalah Oxidative Desulfurization (ODS) yang memiliki keunggulan menggunakan kondisi operasi tekanan dan suhu yang rendah. Pada penelitian ini, dilakukan proses ODS menggunakan katalis karbon aktif-asam format, dan oksidator hidrogen peroksida yang memiliki kinerja terbaik menurut peneliti sebelumnya. Proses ODS dilakukan pada wadah berpengaduk pada suhu 30°C sampai 70°C dengan rasio komposisi katalis antara karbon aktif dan asam format 0,01:1 hingga 0,06:1, di oksidasi selama 40 sampai 90 menit, dan rasio molar oksidator terhadap sulfur (O/S) sebesar 6:1 sampai 80:1. Setelah proses oksidasi, dilakukan proses sentrifugasi untuk memisahkan Biosolar dengan sulfur yang telah teroksidasi. Kandungan senyawa sulfur pada biosolar sebelum dan sesudah proses ODS dianalisis dengan metode FTIR. Hasil dari penelitian yang dilakukan, katalis yang digunakan mampu mendesulfurisasi hingga 7,6%, dilakukan dengan menggunakan komposisi katalis antara Karbon Aktif-Asam Format sebesar 0,7 g-1 mL dalam 100 mL Biosolar pada suhu proses ODS sebesar 30℃, waktu oksidasi selama 60 menit, dan rasio molar H2O2/S yaitu 12.

The sulfur content in Biosolar B-30 causes losses because it shortens the life of the vehicle engine. To overcome this, one of the processes to reduce sulfur content is Oxidative Desulfurization (ODS) which has the advantage of using low pressure and temperature operating conditions. In this study, the ODS process was carried out using an acid-activated formic carbon catalyst, and hydrogen peroxide as an oxidizing agent which had the best performance according to previous researchers. The ODS process is carried out in a stirred vessel at a temperature of 30℃ to 70°C with a catalyst composition ratio between activated carbon and formic acid 0.01:1 to 0.06:1, oxidized for 40 to 90 minutes, and a molar ratio of oxidizing agent to sulfur (O/S) of 6:1 to 80:1. After the oxidation process, a centrifugation process was carried out to separate the biodiesel from the oxidized sulfur. The content of sulfur compounds in biodiesel before and before the ODS process was analyzed by the FTIR method. The results of the research conducted, the catalyst used was able to desulfurize up to 7.6%, carried out using a catalyst composition between Activated Carbon-Formic Acid of 0.7 g-1 mL in 100 mL Biosolar at an ODS process temperature of 30℃, oxidation time for 60 minutes, and the molar ratio of H2O2/S is 12."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adam Hirsaman
"Pesatnya pembangunan di bidang transportasi berimplikasi pada meningkatnya kebutuhan akan bensin (gasoline). Peningkatan ini tidak sejalan dengan cadangan minyak bumi dunia sebagai bahan baku utama pembuatan bensin yang terus menurun. Ini menyebabkan urgensi kebutuhan akan bensin dari bahan baku altelnatif yang terbarukan semakin meningkat dari waktu ke waktu. Minyak sawit, merupakan salah satu bahan yang disebut-sebut dapat digunakan untuk menghasilkan alternatif bensin (biogasoline). Pada penelitian ini biogasoline disintesis dari minyak sawit melalui reaksi hydrocracking dengan katalis NiMo/zeolit yang merupakan katalis pada proses hydrocracking minyak bumi. Penelitian dilakukan dengan mereaksikan minyak sawit dalam reaktor batch berpengaduk bersama katalis NiMo/zeolit dan gas hidrogen. Perbandingan berat katalis/reaktan yang digunakan adalah 1:75. Gas hidrogen dialirkan dengan laju alir rendah pada suhu ruang. Reaksi dilakukan pada tekanan atmosferik dengan 2 variasi suhu, yaitu 300°C dan 320°C masing-masing selama 1 jam, 1.5 jam, dan 2 jam. Penurunan densitas produk reaksi terhadap densitas minyak sawit, penambahan jumlah gugus -CH3, dan pengurangan gugus -C=C- yang ditunjukkan oleh spektrum FTIR, menunjukkan bahwa reaksi hydrocracking yang diinginkan pada penelitian ini memang benar terjadi. Untuk mendapatkan produk biogasoline, dilakukan distilasi batch secara bertahap sebanyak dua kali untuk masing-masing produk reaksi. Pengukuran densitas produk biogasoline menunjukkan hasil yang mendekati densitas bensin komersial. Uji GC dan GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial. Namun demikian masih terdapat kandungan senyawa yang tidak termasuk dalam fraksi bensin dalam proporsi yang cukup besar sehingga produk biogasoline yang didapatkan ini belum dapat digunakan untuk menggantikan bensin. Ini ditunjukkan oleh bilangan oktan produk biogasoline yang jauh lebih kecil dibanding standar bilangan oktan bensin komersial. Untuk mendapatkan produk biogasoline yang memenuhi kriteria bensin, diperiukan proses pemisahan lebih lanjut untuk memisahkan fraksi berat tersebut."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49559
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Mailisa F.
"Kebutuhan bensin meningkat seiring dengan meningkatnya kebutuhan kendaraan bermotor. Namun produksi minyak bumi sebagai bahan baku pembuatan bensin menurun setiap tahunnya sehingga perlu dikembangkan sumber alternatif untuk memperoleh bensin. Bensin merupakan campuran senyawa hidrokarbon C5 - C10. Salah satu sumber hidrokarbon adalah biomass, misalnya minyak kelapa sawit. Indonesia merupakan penghasil minyak sawit terbesar kedua di dunia. Perengkahan katalitik minyak sawit menjadi bahan bakar telah berhasil dilakukan. Pada penelitian saat ini akan dipelajari perengkahan katalitik minyak sawit untuk memproduksi senyawa hidrokarbon setaraf bensin. Pengaruh jenis umpan minyak sawit, temperatur reaksi, penambahan aditif pada katalis dalam proses perengkahan dipelajari dengan mengunakan suatu fixed bed reactor yang beroperasi pada tekanan 1.5 kgf/cm2. Umpan yang akan direngkahkan dilakukan preparasi awal terlebih dahulu melalui oksidasi, transesterifikasi dan penambahan metanol. Temperatur reaksi akan dilakukan dari 350°C sampai dengan 500 °C. Aditif yang ditambahkan pada katalis zeolit adalah B2O3 dengan variasi dari 5% sampai 20 % berat. Produk cair hasil reaksi dianalisis GC-FID dan FT-IR. Sedangkan, karakteristik katalis dilakukan untuk melihat perubahan luas permukaan dengan menggunakanBET dan keberadaan B2O3 pada kristal zeolit dianalisis dengan XRD. Penambahan B2O3 menyebabkan menurunnya luas permukaan katalis dan ukuran pori katalis. Penambahan B2O3 optimum adalah 5%. Yield bensin terbaik yaitu 52.5% diperoleh pada temperatur 450 °C, dengan umpan POME dan katalis zeolit alam murni."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49581
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadi Ahmad Mawardi
"Kenyataan bahwa cadangan minyak bumi dunia yang semakin menipis tidak dapat terelakkan lagi. Dengan kondisi ini memaksa dilakukannya pencarian energi alternatif yang dapat mengurangi beban suplai energi dari basis minyak bumi. Konsumsi bahan bakar bensin di Indonesia terus meningkat tetapi suplai akan bensin tersebut sudah mulai menipis. Minyak kelapa sawit yang dimiliki Indonesia sangat melimpah, dapat dijadikan sebagai sumber bahan bakar bensin. Minyak kelapa sawit mengandung trigeliserida yang mengikat asam lemak jenuh maupun tak jenuh, salah satunya asam oleat yang kandungannya sangat besar mencapai 43%.
Secara teoritis, ikatan rangkap pada asam lemak tak jenuh trigliserida dapat terengkah dengan menggunakan katalis asam salah satunya katalis ?-alumma. Penelitian ini dilakukan dengan mereaksikan minyak sawit dengan katalis ?-alumina di dalam reaktor tumpak berpengaduk. Untuk mendapatkan kondisi yang optimum maka dilakukan variasi perbandingan berat minyak/katalis 100:1, 75:1 dan 50:1, suhu reaksi 260-340°C dan waktu reaksi 1-2 jam.
Dari hasil uji densitas dan viskositas dan FTIR maka diperoleh kondisi optimum sebagai berikut : perbandingan berat minyak/katalis 100:1, waktu reaksi 1.5 jam dan suhu 340°C. Untuk mendapatkan produk biogasoline, dilakukan distilasi tumpak secara bertahap sebanyak dua kali untuk ketiga produk reaksi yang terbaik dari masing - masing perbandingan berat minyak/katalis. Identifikasi produk biogasoline dengan analisis densitas dan viskositas menunjukkan hasil yang mendekati bensin komersial. Dari uji FTIR, uji GC dan uji GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial dengan yield 11.79% v/v) dan konversi 28% (v/v)terhadap umpan minyak sawit dan bilangan oktana 61."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49579
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>