Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Wurangian, Leonardo
"Keterbatasan dalam pengoperasian kursi roda membuat ketidaknyamanan yang besar bagi penggunanya. Salah satu metode yang dapat membantu kaum yang mengalami keterbatasan dalam mengoperasikan kursi roda adalah suatu sistem yang disebut Brain-Computer Interface. Sistem ini menggunakan elektroensefalografi (EEG) sebagai sarana komunikasi antara sinyal otak pengguna dan mekanisme pengendalian kursi roda. Proses akuisisi data melibatkan penggunaan elektroda AgCl 8 kanal, Raspberry Pi 4 Model B, dan ADS1299. Teknik pengolahan sinyal, termasuk bandpass filter, Independent Component Analysis (ICA), dan analisis Power Spectral Density (PSD), diimplementasikan untuk meningkatkan kualitas sinyal EEG yang diperoleh. Tahap klasifikasi menggunakan Support Vector Machine (SVM) untuk menginterpretasikan sinyal yang telah diproses, mencapai akurasi yang mengesankan sebesar 90%, presisi sebesar 91,4%, dan sensitivitas sebesar 90%.
......Limitations in wheelchair operation create great inconvenience for users. One method that can help people who experience limitations in operating a wheelchair is a system called Brain-Computer Interface. This system uses electroencephalography (EEG) as a means of communication between the user's brain signals and the wheelchair control mechanism. The data acquisition process involves the use of 8-channel AgCl electrodes, a Raspberry Pi 4 Model B, and an ADS1299. Signal processing techniques, including bandpass filter, Independent Component Analysis (ICA), and Power Spectral Density (PSD) analysis, were implemented to improve the quality of the acquired EEG signals. The classification stage used Support Vector Machine (SVM) to interpret the processed signals, achieving an impressive accuracy of 90%, precision of 91.4%, and sensitivity of 90%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dio Alif Pradana
"Penelitian ini berfokus pada pengembangan algoritma untuk EEG-based Brain Computer Interface (BCI) yang memanfaatkan sinyal otak untuk mengendalikan external device secara langsung. Jenis sinyal EEG yang digunakan dalam penelitian ini adalah sinyal Motor Imagery (MI) yang berisikan imajinasi gerakan anggota tubuh tertentu tanpa dilakukannya gerakan secara langsung. Pengaplikasian sinyal MI-EEG ke dalam BCI masih memiliki kendala utama dikarenakan pola yang dihasilkan sulit untuk dibedakan antara jenis gerakan yang satu dengan jenis gerakan lainnya, maupun pada jenis gerakan yang sama. Pembaharuan yang dilakukan oleh peneliti adalah dengan memanfaatkan metode Wavelet Packet Transform (WPT) yang digunakan untuk meningkatkan resolusi temporal dari sinyal dengan cara mendekomposisikan sinyal ke dalam pita - pita frekuensi (frequency band) baik pada frekuensi tinggi maupun frekuensi rendah, sehingga dapat meningkatkan kemampuan Common Spatial Pattern (CSP) sebagai spatial filter sehingga didapatkan resolusi spatial yang lebih baik untuk sinyal MI-EEG tersebut. Convolutional Neural Network (CNN) kemudian dipilih untuk pelatihan dari klasifier, dimana hasil pelatihan ini nantinya akan digunakan untuk mengklasifikasikan gerakan dari MI-EEG yang diberikan. Performa dari metode ini akan dianalisis dengan menggunakan dataset 2a dari Brain Computer Interface Competition IV (BCIC IV) dan menghasilkan peningkatan rerata nilai akurasi hingga 32%, Kappa hingga 0,42, dan F-Score hingga 0,39 dibandingkan dengan hanya menggunakan CNN sebagai klasifiernya. Performa dari algoritma ini juga memiliki nilai Kappa yang cukup baik dibandingkan dengan metode – metode lain yang digunakan sebelumnya pada dataset 2a dari BCIC IV.
......This study is focused on proposed a new algorithm in EEG-based Brain Computer Interface (BCI) that can directly utilize brain signals to control external devices. Motor Imagery (MI) signal, which contains the imagination of a certain limb movement, is generally used in BCI. It does not need direct movement. The application of MI-EEG signal into BCI still has major problems because the patterns obtained for each recording can be different from one another even though they have the same type of motion. In this study, we utilize the Wavelet Packet Transform (WPT) method which is used to decompose the EEG signal into specifics sub-bands frequency and Common Spatial Pattern (CSP) as a spatial filter to increase the spatial resolution of the EEG signal. The Convolutional Neural Network (CNN) is then selected for training from the classifier. The results of this training will later be used to classify the movements of the given MI-EEG. We evaluate the model using dataset 2a from Brain-Computer Interface Competition (BCIC) IV. The results show that the average accuracy increases 32%, Kappa up to 0.42, and F-Score up to 0.39 compared to only using CNN as the classifier. The performance of this algorithm also has a fairly good Kappa value compared to other methods used previously in dataset 2a from BCIC IV."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library