Ditemukan 3 dokumen yang sesuai dengan query
Harun Al Rasyid
"Teknologi fuel cell (selbahanbakar) merupakan salah satu teknologi yang menggunakan bahan bakar dari energi baru terbarukanya itu hidrogen. Teknologi ini dianggap bersih dan ramah lingkungan. Efisiensi konversi yang tinggi danemisi polutannya sangat rendah sehingga dampak lingkungan yang rendah juga membuatnya menjadi kandidat yang tepat untuk menggantikan teknologi konvensional ada. Aplikasidariteknologi fuel cell, antara lain untuk transportasi/ otomotif, pembangkitlistrikstasionerdan fuel cell portabel.Untuk teknologi fuel cell jenis proton exchange membrane (PEM) sebagai pembangkit listrik, khususnya di Indonesia masih belum berkembang. Oleh karena itu perlu dilakukan analisis tekno ekonomi dari pembangkit listrik fuel cell jenis PEM dengan melihat karakteristik kerja dan efisiensi sistem, khususnya peralatan disisi keluaran seperti konverter dan inverter terhadap beban rumah tangga(beban yang dipakai lampu) dari beberapa profil beban seperti profil beban statis dan fluktuatif. Hasil uji kinerja sistem pembangkit listrik fuel cell memperlihatkan karakteristik dari fuel cell, yang berupa kurva polarisasi perubahan tegangan terhadap perubahan arus beban.Dari Kurva polarisasi V-I didapatkan nilai polarisasi aktivasi (α) pada saat pembebanan fluktuatif lebih besar dibandingkan pada saat pembebanan statis, sedangkan nilai polarisasi ohmic (r) pada saat pembebanan fluktuatif lebih kecil dibandingkan pada saat pembebanan statis. Hal ini memperlihatkan proporsi energi listrik yang timbul saat perubahan laju reaksi pada pembebanan fluktuatif lebih besar dibandingkan pada pembebanan statis. Sehingga reaksi yang terjadi lebih cepat dan mengakibatkan tegangan akan lebih cepat turun. Dari segi keekonomian biaya energi pembangkit listrik fuel cell jenis PEM untuk kapasitas 500W dan 2 kW masih cukup besar yaitu Rp/kWh10.117,2 dan Rp/kWh 5.330,4. Tetapi untuk kapasitas 5kW ternyata jauh lebih rendah yaitu sebesar Rp/kWh3.048,7. Hal ini di karenakan selain biaya investasi yang menjadilebihkecil,biaya bahan bakar juga menjadi lebih kecil. Biaya bahan bakar bisa jauh lebih murah dikarenakan konsumsi gas hidrogen berdasarkan arus beban yang dipakai pada kapasitas 5kW hanya dua kali lipat jumlahnya dibandingkan kapasitas 500W, sedangkan produksi listrik yang dihasilkan sepuluh kali lipat.
Fuel cell technology utilizes fuels from renewable sources i.e. hydrogen. Therefore, this technology is considered clean and environmentally friendly. High conversion efficiency with very low pollutant emission makes this technology a favorable candidate to substitute the existing conventional energy conversion technology. Applications of fuel cell technology include power for transportation/automotive, stationary fuel cell, and portable fuel cell. PEM type fuel cell technology as a power generation has not been developed in Indonesia. Therefore, it is necessary to analyze techno-economic of the PEM fuel cell technology by examining its operation characteristics and system efficiency particularly conversion equipment at output side such as converter and inverter for household load (lighting) at various load profile i.e, static and fluctuated loads. Performance analysis that is presented in V-I polarization curve shows the fuel cells characteristics. From this curve, polarization activation value (α) at fluctuated loads is higher than that of static loads, whereas polarization ohm value (r) is lower at static loads than fluctuated loads. This result demonstrates electricity produced at fluctuated loads is higher compared to that at static load. Consequently, chemical reactions are faster that affect voltage to drop faster. Cost of energy for PEM fuel cell is still considerably high for 500 W and 2 kW that are Rp/kWh10.117,2 and Rp/kWh 5.330,4. While for 5 kW fuel cell system, COE is far lower that is Rp/kWh3.048,7. This is due to cost of investment and fuels decrease significantly. Cost of fuel can be reduced substantially because oxygen consumption at a 5 kW fuel cell system is only double than that of the 500 W system, whereas electicity production is 10 times higher."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42385
UI - Tesis Membership Universitas Indonesia Library
Amien Rahardjo
[date of publication not identified]
LP-pdf
UI - Laporan Penelitian Universitas Indonesia Library
Muhammad Hafid Thoyibi
"Bahan bakar fosil telah memainkan peran penting dalam pembangunan masyarakat, tetapi dampak lingkungan yang ditimbulkan dan keterbatasan sumber dayanya menunjukan perlunya dilakukan transisi menuju energi berkelanjutan. Sel bahan bakar berbasis hidrogen menghadapi tantangan dalam hal penyimpanan dan transportasi. Amonia muncul sebagai alternatif yang menjanjikan dengan kepadatan energi yang tinggi dan efisiensi biaya. Penelitian ini mengeksplorasi sintesis nikel oksida berpori (p-NiO) melalui metode anodisasi untuk meningkatkan luas permukaan dan stabilitasnya sebagai anoda dalam Direct Ammonia Fuel Cell (DAFC). Berdasarkan hasil karakterisasi FTIR dan UV-DRS, dapat dilihat bahwa p-NiO telah berhasil disintesis di atas permukaan Ni foil melalui metode anodisasi. Proses anodisasi dilakukan pada beberapa variasi potensial yaitu 5 V, 15 V, 30 V, 45 V, dan 60 V, dimana berdasarkan hasil uji elektrokima voltametri siklik dalam pengujian luas permukaan elektro-aktif dan eletro-oksidasi amonia, NiO-45 menunjukkan hasil yang optimum. Selanjutnya, uji performa NiO-45V sebagai anoda pada DAFC menunjukkan densitas tertinggi sebesar 429,25 μW cm-2. Hasil ini menunjukkan potensi NiO-45 sebagai elektroda pada DAFC.
Fossil fuels have played a crucial role in societal development, but their environmental impacts and limited availability necessitate a transition to sustainable energy sources. Hydrogen-based fuel cells face challenges in storage and transportation. Ammonia emerges as a promising alternative due to its high energy density and cost efficiency. This study explores the synthesis of porous nickel oxide (p-NiO) via anodization to enhance its surface area and stability as an anode in Direct Ammonia Fuel Cells (DAFC). Based on FTIR and UV-DRS characterizations, the anodization process successfully formed p-NiO on the Ni foil surface. Anodization was carried out at various potentials (5 V, 15 V, 30 V, 45 V, and 60 V). From cyclic voltammetry electrochemical tests on surface area and ammonia electro-oxidation, NiO-45 exhibited optimal results. Furthermore, the performance test of NiO-45 as an anode in ammonia fuel cells demonstrated the highest power density of 429.25 μW cm⁻². These findings indicate that NiO-45 has potential as an electrode in ammonia fuel cells"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library