Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Siti Nurbayti
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2002
T40189
UI - Tesis Membership  Universitas Indonesia Library
cover
Elvina Risha Desianty
Abstrak :
Kebutuhan akan media pengemas semakin meningkat seiring dengan perubahan era yang serba instan. Sebagian besar kemasan masih menggunakan plastik yang sulit terurai karena masih minimnya kemasan yang berbahan baku ramah lingkungan. Salah satu upaya untuk mengatasi masalah tersebut adalah dengan mengolahnya menjadi bioplastik. Pada penelitian ini bioplastik diproduksi dengan variasi jenis pengisi lempung dan kitosan sehingga diperoleh karakteristiknya terhadap parameter uji mekanik yang berupa elongasi dan kuat tarik, uji fisik berupa biodegradabilitas dan daya serap air, uji sifat morfologi dan uji gugus fungsi. Untuk mencapai tujuan tersebut, selulosa daun nanas digunakan sebagai bahan baku utama pembuatan bioplastik. Selulosa terlebih dahulu diekstraksi baru kemudian dicampur dengan plasticizer gliserol, pengisi kitosan dan lempung dengan variasi komposisinya adalah 4 : 0,8 gram; 3,2 : 1,6 gram; 2,4 : 2,4 gram; 1,6 : 3,4 gram; dan 0,8 gram : 4gram. Hasil formulasi bioplastik kemudian dicetak untuk selanjutnya dikarakterisasi dengan berbagai uji, baik uji mekanik yang berupa elongasi dan kuat tarik, uji fisik berupa biodegradabilitas dan daya serap air, uji sifat morfologi menggunakan Scanning Electron Microscope (SEM), dan uji gugus fungsi menggunakan Fourier Transform Infrared Spectroscopy (FTIR). Hasil dari penelitian ini menunjukkan bahwa sampel bioplastik memiliki gugus fungsi yang serupa dan terlihat tidak membentuk gugus fungsi baru. Sifat fisik terbaik berupa daya serap air dimiliki oleh sampel BKC1 dengan persentase yang dihasilkan sebesar 62,8%. Sedangkan sampel BKC5 memiliki nilai yang cukup tinggi sebesar 87,7%. Meskipun daya serap air BKC5 memiliki nilai yang paling tinggi, sampel tersebut laju biodegradasinya adalah yang paling cepat yang mampu terdegradasi yaitu selama 8 hari, sedangkan sampel BKC1 adalah yang paling lambat terdegradasi, yaitu selama 23 hari. Sifat mekanik pada penelitian ini menghasilkan nilai kuat tarik tertinggi sebesar 4,99 N/mm2 dengan elongasi saat putus sebesar 30,20% oleh sampel BKC1 dan kuat tarik terendah pada sampel BKC5 sebesar 1,45 N/mm2 dengan elongasi saat putus 13,01%. Hasil uji SEM pada penelitian ini menunjukkan adanya kemerataan pada sampel bioplastik dengan pengisi khususnya pada pengisi lempung terlihat bahwa adanya pori-pori yang terbentuk seiring penambahan komposisi. Dari penelitian ini terlihat bahwa dengan adanya penambahan pengisi dapat memperbaiki karakteristik bioplastik dari selulosa daun nanas menjadi lebih baik. ......The demand for packaging materials is increasing as we transition into an era of instant consumption. Most packaging still relies on non-biodegradable plastics, leading to environmental concerns. One way to address this issue is by producing bioplastics. In this research, bioplastics were produced using a combination of clay and chitosan as fillers to achieve specific characteristics related to mechanical properties (elongation and tensile strength), physical properties (biodegradability and water absorption), morphology, and functional groups analysis. Pineapple leaf cellulose was used as the main raw material for bioplastic production. The cellulose was first extracted and then mixed with glycerol as a plasticizer, chitosan, and clay fillers in various compositions: 4 : 0.8 grams, 3.2 : 1.6 grams, 2.4 : 2.4 grams, 1.6 : 3.4 grams, and 0.8 grams : 4 grams. The formulated bioplastic samples were then molded and characterized through various tests, including mechanical tests (elongation and tensile strength), physical tests (biodegradability and water absorption), morphology analysis using Scanning Electron Microscopy (SEM), and functional group analysis using Fourier Transform Infrared Spectroscopy (FTIR). The results of this research showed that the bioplastic samples had similar functional groups and did not form new functional groups. The best physical property in terms of water absorption was observed in sample BKC1, which had a water absorption percentage of 62.8%. On the other hand, sample BKC5 had a relatively high water absorption value of 87.7%. Although BKC5 had the highest water absorption, it also exhibited the fastest biodegradation rate, degrading within 8 days. In contrast, BKC1 had the slowest degradation rate, taking 22 days to degrade. Regarding mechanical properties, the research yielded the highest tensile strength of 4,99 N/mm2 and elongation at break of 30,20% for sample BKC1, while the lowest tensile strength of 1,45 N/mm2 and elongation at break of 13,01% were observed in sample BKC5. SEM analysis showed uniformity in the bioplastics samples, particularly with clay fillers, where the formation of pores increased with higher filler compositions. From this research, it can be seen that the addition of fillers can improve the characteristics of bioplastics made from pineapple leaf cellulose.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Luna Fausya
Abstrak :
Increased plastic waste in the environment, particularly in the mangrove forest of Pulau Rambut, Jakarta Bay, has the potential to affect the abundance of microplastics in the surrounding waters. Microplastics, which are very small in size (<5mm), can be accidentally ingested by marine organisms such as Terebralia palustris and have negative effects on marine life, the environment, and humans. This study aims to analyze the comparison of microplastic abundance in T.palustris and sediment in the mangrove forest of Pulau Rambut, Jakarta Bay, in 2022 and 2023, as well as to determine the correlation between microplastic abundance in T.palustris and sediment. Twenty samples of T.palustris and sediment were collected at four stations in 2022 and 2023. The body tissue of T.palustris was separated from its shell, then dissolved with HNO3 and added to saturated NaCl. Sediment samples were dissolved with saturated NaCl. Microplastic abundance was observed and calculated using a Sedgwick Rafter Chamber under a microscope. Four forms of microplastics were observed in the T. palustris and sediment samples, namely fibers, fragments, films, and granules. The results showed an increase in microplastic abundance from 2022 to 2023. In 2022, the microplastic abundance was 363,592 ± 11,511 particles/g in T. palustris and 66,69 ± 7,638 particles/g in sediment, while in 2023, it reached 406,574 ± 6,154 particles/g in T. palustris and 79,7 ± 12,992 particles/g in sediment. From 2022 to 2023, the abundance of microplastic in T.palustris (particle/g) increased by 5%, T.palustris (particle/individual) increased by 37%, and sediment by 19%. There is a positive correlation between the microplastic abundance of T.palustris and sediment, with value of 0,768 obtained from the Spearman correlation test.Increased plastic waste in the environment, particularly in the mangrove forest of Pulau Rambut, Jakarta Bay, has the potential to affect the abundance of microplastics in the surrounding waters. Microplastics, which are very small in size (<5mm), can be accidentally ingested by marine organisms such as Terebralia palustris and have negative effects on marine life, the environment, and humans. This study aims to analyze the comparison of microplastic abundance in T.palustris and sediment in the mangrove forest of Pulau Rambut, Jakarta Bay, in 2022 and 2023, as well as to determine the correlation between microplastic abundance in T.palustris and sediment. Twenty samples of T.palustris and sediment were collected at four stations in 2022 and 2023. The body tissue of T.palustris was separated from its shell, then dissolved with HNO3 and added to saturated NaCl. Sediment samples were dissolved with saturated NaCl. Microplastic abundance was observed and calculated using a Sedgwick Rafter Chamber under a microscope. Four forms of microplastics were observed in the T. palustris and sediment samples, namely fibers, fragments, films, and granules. The results showed an increase in microplastic abundance from 2022 to 2023. In 2022, the microplastic abundance was 363,592 ± 11,511 particles/g in T. palustris and 66,69 ± 7,638 particles/g in sediment, while in 2023, it reached 406,574 ± 6,154 particles/g in T. palustris and 79,7 ± 12,992 particles/g in sediment. From 2022 to 2023, the abundance of microplastic in T.palustris (particle/g) increased by 5%, T.palustris (particle/individual) increased by 37%, and sediment by 19%. There is a positive correlation between the microplastic abundance of T.palustris and sediment, with value of 0,768 obtained from the Spearman correlation test. ......Increased plastic waste in the environment, particularly in the mangrove forest of Pulau Rambut, Jakarta Bay, has the potential to affect the abundance of microplastics in the surrounding waters. Microplastics, which are very small in size (<5mm), can be accidentally ingested by marine organisms such as Terebralia palustris and have negative effects on marine life, the environment, and humans. This study aims to analyze the comparison of microplastic abundance in T.palustris and sediment in the mangrove forest of Pulau Rambut, Jakarta Bay, in 2022 and 2023, as well as to determine the correlation between microplastic abundance in T.palustris and sediment. Twenty samples of T.palustris and sediment were collected at four stations in 2022 and 2023. The body tissue of T.palustris was separated from its shell, then dissolved with HNO3 and added to saturated NaCl. Sediment samples were dissolved with saturated NaCl. Microplastic abundance was observed and calculated using a Sedgwick Rafter Chamber under a microscope. Four forms of microplastics were observed in the T. palustris and sediment samples, namely fibers, fragments, films, and granules. The results showed an increase in microplastic abundance from 2022 to 2023. In 2022, the microplastic abundance was 363,592 ± 11,511 particles/g in T. palustris and 66,69 ± 7,638 particles/g in sediment, while in 2023, it reached 406,574 ± 6,154 particles/g in T. palustris and 79,7 ± 12,992 particles/g in sediment. From 2022 to 2023, the abundance of microplastic in T.palustris (particle/g) increased by 5%, T.palustris (particle/individual) increased by 37%, and sediment by 19%. There is a positive correlation between the microplastic abundance of T.palustris and sediment, with value of 0,768 obtained from the Spearman correlation test.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library