Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Raja Fatah Satrio Abimanyu
"Optimasi pemilihan rute pelayaran kapal kontainer merupakan salah satu cara untuk meningkatkan efisiensi dan mengurangi biaya operasional perusahaan pelayaran. Dalam penelitian ini, kami menggunakan algoritma Ant Colony Optimization (ACO) untuk menentukan rute pelayaran terbaik bagi kapal kontainer di trayek Asia. Algoritma Ant Colony Optimization (ACO) merupakan salah satu metode heuristik yang menerapkan semut sebagai agen dengan update Pheromone-nya untuk dapat melakukan proses pencarian solusi yang efektif dan efisien. Algoritma ACO yang dibandingkan sebanyak lima yaitu Ant System (AS), Elitist Ant System(EAS), Rank-based Ant System (ASRank), Max-min Ant System (MMAS), dan Ant Colony System (ACS). Dengan menggunakan data historis lalu lintas pelayaran dan mengoptimalkan faktor-faktor seperti waktu tempuh, biaya bahan bakar, dan biaya gerbang pelabuhan untuk menentukan rute terbaik. Hasil dari penelitian ini menunjukkan bahwa Ant Colony System (ACS) dengan proses iterasi yang cepat hanya 1 detik dan input parameter  yang menghasilkan pemilihan rute 6-9-8-5-2-3-1-7-4-10-12-11-6, dan jarak 15626,39 mil serta waktu tempuh perjalanan 1131,576 jam, dimana hasil ini memiliki Efisiensi jarak sebesar 65,9404 % dan ini berbanding lurus dengan optimasi bahan bakar maupun waktu yan ditempuh.

Optimizing container ship routing is one way to improve efficiency and reduce operational costs for shipping companies. In this research, we utilized the Ant Colony Optimization (ACO) algorithm to determine the best shipping route for container ships in the Asian region. The ACO algorithm is a heuristic method that utilizes ants as agents with updated pheromones to effectively and efficiently search for solutions. Five ACO algorithms were compared: Ant System(AS), Elitist Ant System(EAS), Rank-based Ant System(ASRank), Max-min Ant System(MMAS), and Ant Colony System(ACS). Using historical shipping traffic data, we optimized factors such as travel time, fuel costs, and port gate costs to determine the best route. The results of this research showed that the Ant Colony System (ACS) with a fast iteration process of only 1 second and input parameters α ∈ {1}, β ∈ {2 and 3}, m = 10, τ0 ∈ {0}, and ρ ∈ {0.5} yielded the route selection 6-9-8-5-2-3-1-7-4-10-12-11-6, with a distance of 15,626.39 miles and a travel time of 1,131.576 hours.  result where this has a distance efficiency of 65.9404% and this is directly proportional to the optimization of fuel and time taken."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achnaf Fauzan Umar
"Dalam perkembangannya, dengan munculnya pelabuhan-pelabuhan baru yang dapat mengakomodir kapal – kapal internasional untuk bersandar, pilihan rute pelayaran yang dapat ditempuh oleh suatu kapal kontainer akan semakin beragam. Efisiensi dari rute yang dipilih dapat dilihat dari penggunaan bahan bakar yang digunakan oleh kapal kontainer untuk mencapai tujuannya. Bahkan beberapa penelitian menyatakan bahwa 50-60% dari keseluruhan biaya operasional kapal didasarkan pada biaya bahan bakar kapal. Harga bahan bakar juga berfluktuatif dan tidak menentu pada setiap pelabuhan sehingga membuat sebuah kesulitan baru bagi perusahaan pelayaran dalam menentukan rute pelayaran yang paling efisien bagi mereka. Pemilihan rute kapal yang tepat sangat penting untuk meminimalkan biaya operasional. Pada penelitian ini, algoritma yang digunakan untuk pemilihan rute kapal dengan biaya paling minimum adalah algoritma Ant Colony dan Brute Force. Data yang digunakan pada penelitian ini berupa data jarak mil laut antara pelabuhan, daya mesin utama dan juga mesin bantu, kecepatan kapal, dan harga bahan bakar di tiap pelabuhan. Pengolahan data dilakukan dengan membuat model Asymetric Travelling Salesman Problem (ATSP) yang memiliki fungsi objektif bahan bakar yang se efisien mungkin, yang nantinya akan diterapkan algoritma Ant Colony dan Brute Force model ATSP. Variasi yang dilakukan pada penelitian ini terdapat pada destinasi awal atau akhir dari pemilihan rute. Hasil penelitian menunjukkan bahwa algoritma Brute Force melakukan pemilihan rute lebih optimal dibandingkan dengan algoritma Ant Colony dari segi penggunaan bahan bakar.

On its development, with the emergence of new ports that can accommodate international ships to dock, the choice of shipping routes that can be taken by a container ship will be more diverse. The efficiency of the chosen route can be seen from the use of fuel used by the container ship to reach its destination. Some studies state that 50-60% of the overall ship operating costs are based on fuel costs. Fuel prices also fluctuate and are uncertain at each port, making it difficult for companies to determine the most efficient shipping route for them. Selection of the optimum ship route is very important for operational costs. In this study, the algorithm used for selecting the shipping route with the minimum cost is the Ant Colony and Brute Force algorithms. The data used in this study are the distance of nautical miles between ports, main engine power and auxiliary engines, ship speed, and fuel prices at each port. Data processing is start by making the Asymmetric Traveling Salesman Problem (ATSP) model which has the most efficient fuel objective function, which will later be applied to the Ant Colony and Brute Force ATSP models. Variations made in this study are in the initial or final destination of the route selection. The results showed that the Brute Force algorithm selected the optimal route compared to the Ant Colony algorithm in terms of fuel usage."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raymond Lesmana
"Kapal memiliki peran yang sangat penting pada perekonomian dunia sebagai alat pengangkutan barang baik antar daerah ataupun antar negara. Lebih dari tujuh miliar ton barang dikirim melalui jalur laut setiap tahunnya. Sebagian besar biaya operasional kapal berasal dari pemakaian bahan bakar dan harga bahan bakar sangat bervariasi pada setiap pelabuhan. Pemilihan rute kapal yang tepat merupakan hal yang sangat krusial dalam upaya meminimalisir biaya operasional. Penelitian ini mengimplementasikan metode optimasi dengan mempergunakan algoritma heuristik untuk pemilihan rute kapal dengan tujuan meminimalisir biaya operasional. Data jarak mil laut antar pelabuhan, kecepatan kapal, daya mesin, dan harga bahan bakar pada tiap pelabuhan diolah menjadi sebuah model Asymmetric Travelling Salesman Problem (ATSP). Penerapan 3 algoritma heuristik, yaitu : Nearest Neighbor Algorithm, Simulated Annealing, dan Algoritma Genetika dipergunakan untuk menyelesaikan model ATSP yang dibuat dengan fungsi objektif biaya bahan bakar yang seminimum mungkin. Variasi pada destinasi awal/akhir dari pemilihan rute juga dilakukan sebagai parameter uji tambahan dari setiap algoritma. Hasil penelitian menunjukkan bahwa algoritma genetika memberikan rute dengan biaya bahan bakar yang lebih rendah dari kedua algoritma lain pada setiap pemilihan rute yang dilakukan. Hal ini membuktikan bahwa algoritma genetika lebih efektif dalam menentukan rute kapal dengan biaya bahan bakar yang paling rendah.

Ships have a very important role in the world economy as a means of transporting goods between regions and between countries. More than seven billion tons of goods are shipped by sea each year. Most of the ship's operating costs come from the use of fuel and fuel prices vary widely at each port. Selection of the right ship route is very crucial to minimize operational costs. This study implements an optimization method using a heuristic algorithm for selecting ship routes with the aim of minimizing operational costs. Data on the distance of nautical miles between ports, ship speed, engine power and fuel prices at each port are processed into an Asymmetric Traveling Salesman Problem (ATSP) model. The application of 3 heuristic algorithms, namely: Nearest Neighbor Algorithm, Simulated Annealing, and Genetic Algorithm are used to solve the ATSP model created with the minimum fuel cost objective function. The results showed that the genetic algorithm provides a route with lower fuel costs than the other two algorithms at each route selection made. This proves that the genetic algorithm is more effective in determining the route of ships with the lowest fuel cost."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farrel Jordan Octavian
"Pada tahun 2020, 6 dari 10 ekonomi yang paling terhubung berada di Asia Singapura; Republik Korea; Malaysia; Hong Kong, Cina; dan Jepang. Sektor pengangkutan laut memiliki peran penting untuk memajukan dan memperlancar perdagangan serta memperlancar perpindahan barang dari satu tempat ke tempat yang lain. Biaya transportasi dianggap sebagai biaya paling tinggi dari total biaya logistik dengan bahan bakar sendiri menyerap lebih dari 60 persen dari biaya operasi. Memilih rute yang optimal untuk meminimalkan biaya bahan bakar merupakan solusi yang efektif bagi perusahaan pelayaran saat mengoperasikan kapal liner. Data jarak mil laut antar pelabuhan, kecepatan kapal, daya mesin, dan harga bahan bakar pada tiap pelabuhan diolah menjadi sebuah model Asymmetric Travelling Salesman Problem (ATSP). Penerapan 2 algoritma, yaitu: Brute-Force Method dan Algoritma Held-Karp digunakan untuk menyelesaikan model ATSP yang dibuat dengan fungsi objektif biaya bahan bakar yang seminimum mungkin. Diberikan variasi pada titik awal/akhir rute sebagai parameter uji tambahan dari setiap algoritma. Hasil penelitian menunjukkan bahwa Algoritma Held-Karp memberikan hasil rute dengan biaya bahan bakar yang sama dengan Brute-Force Method namun proses komputasi berjalan lebih cepat. Hal ini membuktikan bahwa algoritma Held-Karp lebih efektif dalam hal waktu untuk menentukan rute kapal dengan biaya bahan bakar yang paling rendah.

In 2020, 6 of the 10 most connected economies w in Asia Singapore; Republic of Korea; Malaysia; Hong Kong, China; and Japan. The sea transport sector has an important role to promote and facilitate trade and facilitate the movement of goods from one place to another. Transportation costs are considered the highest cost of the total logistics costs with fuel alone absorbing more than 60 percent of operating costs. Choosing the optimal route to minimize fuel costs is an effective solution for shipping companies when operating liner vessels. Data on nautical miles between ports, ship speed, engine power, and fuel prices at each port are processed into an Asymmetric Traveling Salesman Problem (ATSP) model. The application of 2 algorithms, namely: Brute-Force Method and Held-Karp Algorithm is used to solve the ATSP model which is made with the objective function of the minimum fuel cost. Variations in the start/end point of the route are given as additional test parameters of each algorithm. The results show that the Held-Karp Algorithm gives route results with the same fuel cost as the Brute-Force Method but the computational process runs faster. This proves that the Held-Karp algorithm is more effective in terms of time to determine ship routes with the lowest fuel costs."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library