Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 21 dokumen yang sesuai dengan query
cover
Dewi Wulandari
"Mata merupakan salah satu indera terpenting bagi kehidupan manusia. Umumnya, banyak manusia yang mengabaikan gangguan fungsi penglihatan, dimana gangguan fungsi penglihatan ini mengindikasikan awal mula penyakit mata. Penyakit mata adalah gangguan fungsi penglihatan berkisar dari gangguan fungsi penglihatan ringan hingga gangguan fungsi penglihatan berat yang dapat menyebabkan kebutaan. Dalam melakukan diagnosa terhadap pasien gangguan fungsi penglihatan memiliki jenis penyakit mata yang diderita, diperlukan tahapan pemeriksaan retina dengan ophthalmoscopy atau fotografi fundus. Setelah itu, seorang dokter spesialis mata menganalisis jenis penyakit mata yang diderita pasien tersebut. Namun, karena terbatasnya sarana fasilitas kesehatan dan dokter spesialis mata yang memeriksa dan mengoperasi. Oleh karena itu, dibutuhkan alat deteksi dini dengan menggunakan data citra agar pasien gangguan penglihatan dapat ditangani sebelum pasien menderita gangguan fungsi penglihatan berat atau dapat mengalami kebutaan. Pada penelitian ini, diusulkan oleh peneliti model klasifikasi citra fundus ke dalam kelas normal, katarak, glaukoma, dan retina disease menggunakan Convolutional Neural Network (CNN) dengan arsitektur AlexNet. Data citra yang digunakan merupakan data fundus image retina yang berasal dari website kaggle. Sebelum data citra fundus image masuk ke dalam proses training model, dilakukan tahapan preprocessing pada data citra fundus image. Pada tahapan proses training dalam CNN digunakan fungsi optimasi untuk meminimalkan fungsi loss. Adapun fungsi optimasi yang digunakan dalam penelitian ini adalah Adam dan diffGrad. Hasil penelitian ini menunjukkan bahwa kedua fungsi optimasi tersebut memiliki hasil evaluasi training yang tidak jauh berbeda pada kedua fungsi optimasi. Keunggulan menggunakan kedua fungsi optimasi ini adalah mudah diterapkan. Pada penelitian ini didapatkan training loss terkecil sebesar 0,4838, validation loss terkecil sebesar 0,6658, dan training accuracy terbaik sebesar 0,8570 yang dimiliki oleh fungsi optimasi Adam. Sedangkan untuk validation accuracy terbaik sebesar 0,7189 yang dimiliki oleh fungsi optimasi diffGrad. Sedangkan running time tercepat pada proses training model sebesar 2840,9 detik yang dimiliki oleh fungsi optimasi diffGrad. Setelah tahapan proses training, dilakukan evaluasi dengan data testing. Secara keseluruhan, apabila dilihat dari hasil testing yang terbaik dimiliki oleh fungsi optimasi Adam dengan nilai accuracy sebesar 63%, recall sebesar 63%, dan precision sebesar 63%. Sedangkan running time tercepat pada proses testing model adalah 5,4 detik yang dimiliki oleh fungsi diffGrad. Dapat disimpulkan bahwa metode CNN menggunakan Arsitektur AlexNet dan fungsi optimasi Adam memberikan performa terbaik dalam mendeteksi penyakit mata pada data fundus image.

The eyes are one of the most important senses for human life. Generally, many people ignore visual impairment, where this visual impairment indicates the onset of eye disease. Eye disease is a visual impairment ranging from mild visual impairment to severe visual impairment which can lead to blindness. In diagnosing patients with visual impairment who have the type of eye disease they suffer, it is necessary to carry out a retinal examination with ophthalmoscopy or fundus photography. After that, an ophthalmologist analyzes the type of eye disease the patient is suffering from. However, due to limited medical facilities and ophthalmologists who examine and operate. Therefore, an early detection tool is needed using image data so that visually impaired patients can be treated before the patient suffers from severe visual impairment or can go blind. In this study, researchers proposed a model for classifying fundus images into normal, cataract, glaucoma, and retinal disease classes using Convolutional Neural Network (CNN) with AlexNet architecture. The image data used is retinal fundus image data from the Kaggle website. Before the fundus image data enters the training model process, a preprocessing stage is carried out on the fundus image data. At this stage of the training process in CNN, an optimization function is used to minimize the loss function. The optimization functions used in this study are Adam and differed. The results of this study indicate that the two optimization functions have training evaluation results that are not much different from the two optimization functions. The advantage of using these two optimization functions is that they are easy to implement. In this research, the smallest training loss is 0.4838, the smallest validation loss is 0.6658, and the best training accuracy is 0.8570 which is owned by the Adam optimization function. As for the best validation accuracy of 0.7189 which is owned by the diffGrad optimization function. Meanwhile, the fastest running time in the model training process is 2840.9 seconds, which is owned by the diffGrad optimization function. After the stages of the training process, evaluation is carried out with data testing. Overall, when viewed from the testing results, Adam's optimization function is the best with an accuracy value of 63%, recall of 63%, and precision of 63%. Meanwhile, the fastest running time in the model testing process is 5.4 seconds, which is owned by the diffGrad function. It can be concluded that the CNN method using AlexNet Architecture and Adam's optimization function provides the best performance in detecting eye diseases in fundus image data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oki Saputra Jaya
"ABSTRAK
Analisis sentimen adalah kegiatan untuk mengklasifikasikan opini publik tentang entitas dalam data tekstual menjadi positif atau negatif. Salah satu metode otomatis untuk analisis sentimen adalah convolution neural network CNN. CNN terdiri dari banyak lapisan dengan banyak parameter yang dapat disesuaikan sesuai kebutuhan untuk membentuk arsitektur tertentu. CNN terbukti efektif untuk penggunaan satu domain data. Namun, CNN kurang akurat jika digunakan dalam domain yang berbeda. Oleh karena itu, digunakan transfer learning untuk mentransfer pengetahuan dari source domain ke target domain yang berbeda namun terkait. Dalam penelitian ini, diuji sensitivitas parameter dan akurasi CNN untuk transfer learning pada analisis sentimen tweet berbahasa Indonesia. Simulasi pada penelitian ini menunjukkan bahwa parameter CNN sangat sensitif dan akurasi transfer learning mendapatkan hasil yang berbeda tergantung pada skenario transfer learning yang digunakan.

ABSTRACT
Sentiment analysis is an activity to classify public opinion about entities in textual data into positive or negative. One of the automatic methods for sentiment analysis is convolution neural network CNN. CNN consists of many layers with many parameters that can be adjusted as needed to form a specific architecture. CNN works well for the use of a single data domain. However, CNN is less accurate if used in different domains. Therefore, transfer learning is used to transfers knowledge from source domains to different but related target domains. In this reserach, examined parameter sensitivity and accuracy of CNN for transfer learning of sentiment analysis in Indonesian tweets. Simulations in this paper show that CNN parameters are very sensitive and the accuracy of learning transfer gets different results depending on the scenario of transfer learning. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturutturut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mega Fransiska
"Digitalisasi proses pengisian data Kartu Tanda Penduduk (KTP) memerlukan proses otomatisasi dan otentikasi, yang dapat dilakukan dengan proses pembacaan teks pada gambar KTP oleh komputer secara otomatis serta mengevaluasi kemiripan wajah pada foto KTP dan swafoto pendaftar. Proses pembacaan data pada KTP secara otomatis disebut juga secagai proses Optical Character Recognition (OCR), sedangkan pengevaluasian kemiripan wajah dapat dilakukan dengan model Siamese Network. Baik Siamese Network maupun model untuk OCR merupakan model yang pada dasarnya digunakan untuk mengolah gambar. Oleh karena itu digunakan Convolutional Neural Network (CNN) sebagai model dasar pada penelitian ini. Pada proses OCR dan evaluasi kemiripan wajah dibutuhkan model yang mampu mendeteksi lokasi teks dan wajah yang akan diekstrak dari gambar, model tersebut merupakan model text detection dan face detection. Model text detection dan face detection merupakan aplikasi dari model object detection. Pada model object detection terbaru, dikembangkan model modifikasi CNN yang mampu mendeteksi obek yang berukuran sangat kecil dan sangat besar, model tersebut dinamakan Bidirectional Feature Pyramid Network (BiFPN). Setelah mengekstrak lokasi teks, langkah dari proses OCR selanjutnya adalah mengenali setiap karakter dalam teks (text recognition), yang dapat dilakukan dengan model Bidirectional Long Short-Term Memory (BiLSTM). Sedangkan dari wajah yang diekstrak selanjutnya ditentukan apakah berasal dari orang yang sama atau tidak oleh model Siamese Network. Pada penelitian ini akan dibangun arsitektur CNN Effiception, yang digabungkan menjadi CNN-BiFPN untuk proses object detection, CNN-BiLSTM, untuk proses text recognition, dan CNN dalam bentuk Siamese Network untuk mengevaluasi kemiripan wajah.

Digitization of ID card applications requires automation and an authentication process, which can be done by computerized ID card information reading and face's similarity evaluating on ID card's photo and applicant selfie. The computerized ID card information reading is named Optical Character Recognition (OCR). While the face's similarity authentication is done by the Siamese Network model. Both the Siamese Network and OCR model basically used to process images. Therefore, the Convolutional Neural Network (CNN) became the base model for this study. Each of OCR and face's similarity authentication required a model that can detect the location of text and face to be extracted from the image. They are text detection and face detection model, which are the applications of object detection. The latest object detection model, EfficientDet, used CNN modification that capable to detect a tiny and huge object at the same time, is called Bidirectional Feature Pyramid Network (BiFPN). After extracting the location of the text, the next step of the OCR process is to recognize each character in the text (text recognition), which can be done with the Bidirectional Long Short-Term Memory (BiLSTM). Meanwhile, the extracted face, from the selfie and ID card's photo, then be determined either from the same person or not, by the Siamese Network. The product of this study is the CNN architecture, Effiception, which is combined into CNN-BiFPN for object detection process, CNN-BiLSTM, for text recognition process, and its modification into Siamese Network architecture to evaluate the face's similarity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Feriansyah Raihan Taufiq
"Citra hiperspektral memiliki jumlah spektral dari suatu objek dengan rentang spektrum yang lebih luas dibandingkan dengan citra RGB. Suatu citra hiperspektral memberikan informasi yang jauh lebih banyak kegunaannya sebagai analisa suatu kasus dibandingkan dengan citra RGB. Salah satu pengaplikasian dengan menggunakan citra hiperspektral yaitu pengukuran suatu kadar tertentu dalam suatu objek. Namun, citra hiperspektral sulit diperoleh dikarenakan memiliki sistem akuisisi yang tidak sederhana. Faktor tersebut dikarenakan pencitraan berbasis citra hiperspektral menggunakan kamera yang mahal, perangkat keras pendukung sistem akuisisi yang kompleks, beserta ukuran citra yang lebih besar dibandingkan dengan citra RGB. Oleh karena itu, penelitian ini melakukan rekonstruksi citra hiperspektral dari citra RGB menggunakan algoritma convolutional neural network dengan arsitektur dense block untuk studi kasus sistem prediksi kadar karotenoid pada daun bisbul. Penelitian ini menghasilkan citra hiperspektral rekonstruksi dari citra RGB yang diperoleh dari proses konversi, beserta citra RGB yang diperoleh dari kamera RGB. Citra hiperspektral yang direkonstruksi pada penelitian ini yaitu berada pada rentang target panjang gelombang 400 nm hingga 1000 nm dengan target jumlah bands sebanyak 112. Algoritma rekonstruksi yang digunakan pada penelitian ini yaitu convolutional neural network dengan arsitektur dense blocks. Pembangunan model rekonstruksi citra pada penelitian ini, yaitu dengan memvariasikan jumlah dense block beserta target rentang dan jumlah panjang gelombang yang akan direkonstruksi. Variasi ini bertujuan untuk mencari model rekonstruksi citra yang optimal untuk merekonstruksi citra hiperspektral dari citra RGB. Lalu, citra hiperspektral rekonstruksi akan digunakan untuk membangun model prediksi kadar karotenoid pada daun bisbul berbasis algoritma machine learning XGBoost, kemudian model prediksi kadar karotenoid berbasis citra hiperspektral rekonstruksi akan dibandingkan dengan model prediksi kadar karotenoid berbasis citra hiperspektral asli. Hasil eksperimen memaparkan bahwa model rekonstruksi citra dengan jumlah dense block sebanyak 30 memiliki performa terbaik, dengan target rentang panjang gelombang 400 nm hingga 1000 nm dan target jumlah bands sebanyak 112. Performa model rekonstruksi citra dengan variasi tersebut memiliki RMSE sebesar 0,0743 dan MRAE sebesar 0,0910. Lalu, performa model prediksi kadar berbasis citra hiperspektral rekonstruksi memiliki RMSE sebesar 0,0565 dan MRAE sebesar 0,0963. Evaluasi kualitatif citra hiperspektral rekonstruksi memiliki pola signatur spektral yang sama dengan citra hiperspektral asli.

Hyperspectral image has the spectral number of an object with a wider spectrum range than RGB image. As a some case analysis, a hyperspectral image is far more useful than RGB image. The measurement of contents in an object is one of the applications of the hyperspectral imagery. However, hyperspectral image is difficult to obtain due to a complicated acquisition system. This is down to the fact that hyperspectral imaging requires more expensive cameras, complex system support devices and have a larger size than RGB images. Therefore, this study reconstruct hyperspectral image using RGB images using a convolutional neural network with dense blocks architecture for a case study of a carotenoid content prediction in (Diospyros discolor Willd.) leaves. This research produces a reconstructed hyperspectral image from the RGB image obtained from the conversion process, and an RGB image obtained from the RGB camera. This study’s reconstructed hyperspectral image has a wavelength target from 400 nm to 1000 nm and a number of bands up to 112. This study’s reconstruction algorithm is a convolutional neural network with dense blocks architecture. In this study, an image reconstruction model is built by varying the number of dense block, target range and number of wavelengths to be reconstructed. The purpose of this variation is to find the best image reconstruction model for constructing hyperspectral images from RGB images. The reconstructed hyperspectral images will then be used to build a prediction model of carotenoid levels in (Diospyros discolor Willd.) leaves using the XGBoost machine learning algorithm, and this model will be compared to the original hyperspectral image based on carotenoid content prediction model. The experimental results indicate that the image reconstruction model with a dense block of 30 and a target wavelength range from 400 nm to 1000 nm with band number consist of 112 performs the best. The image reconstruction model performs well with these variations, with an RMSE of 0,0743 and an MRAE of 0,0910. The RMSE and MRAE of the reconstructed hyperspectral image for carotenoid content prediction model are 0,0565 and 0,0963, respectively. The qualitative evaluation of the reconstructed hyperspectral image has the same spectral signatur pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandyka Gunnisyah Putra
"Machine Learning (ML) dan Deep Learning merupakan bidang yang populer pada masa kini. Salah satu ranah tersebut yang menantang untuk diteliti adalah tentang mendeteksi emosi pada teks. Interaksi antara komputer dan manusia dapat menjadi lebih baik apabila komputer dapat mendeteksi emosi, menginterpretasikan emosi tersebut, dan memberikan umpan balik yang sesuai dengan apa yang manusia inginkan. Oleh karena itu, penelitian ini bertujuan untuk membuat sistem pendeteksi emosi pada teks Bahasa Indonesia. Pada penelitian ini, terdapat 2 macam algoritma Deep Learning yang digunakan, yaitu Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM). Convolutional Neural Network merupakan salah satu algoritma Deep Learning dimana karakteristik utamanya menggunakan operasi matriks konvolusi. Long ShortTerm Memory merupakan salah satu algoritma Deep Learning dimana merupakan perkembangan dari algoritma Recurrent Neural Network (RNN). Kedua algoritma tersebut akan didukung dengan Word Embedding Bahasa Indonesia dari fastText dan Polyglot. Package text2emotion akan digunakan sebagai data tambahan untuk evaluasi. Input dataset yang digunakan untuk Deep Learning adalah dataset cerita dongeng yang memiliki emosi "Senang", "Sedih", "Marah", "Takut", "Terkejut", dan "Jijik". Input dataset tersebut akan melalui tahap preprocessing berupa Case Normalization, Stopword Removal, Stemming, Tokenizer, dan Padding. Setelah itu, proses training dijalankan dengan menggunakan RandomizedSearchCV sebagai hyperparameter tuning. Hasil akan dibandingkan dan dianalisis berdasarkan nilai Evaluation Metrics Accuracy, Precision, Recall, dan F1-Score. Sistem berhasil dirancang dengan mencapai hasil Accuracy sebesar 91,60%, Precision sebesar 92,48%, Recall sebesar 91,60%, dan F1- Score sebesar 91,68%.

Machine Learning (ML) and Deep Learning is a popular region to be used right now. One of the scopes that challenging to research is about emotion recognition on text. Interaction between computer and human can be better if the computer can recognize the emotion, interpret it, and giving a suitable feedback with the human’s need. Therefore, this research has goal to make an emotion recognition on Indonesian text language. On this research, there’s 2 kind of Deep Learning algorithm that used, that is Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Convolutional Neural Network is one of Deep Learning algorithm that its main characteristic is using convolution matrix operation. Long Short-Term Memory is one of Deep Learning algorithm which is an improvement from Recurrent Neural Network (RNN) algorithm. Both algorithms will be supported with Indonesian Word Embedding from fastText and Polyglot. Text2emotion package is used for additional data for evaluation. The input dataset that will be used on this Deep Learning is a fairy tale dataset which have “Happy”, “Sad”, “Anger”, “Fear”, “Surprised”, and “Disgust” emotion. That input dataset will be passed to preprocessing stage that consist of Case Normalization, Stop-word Removal, Stemming, Tokenizer, and Padding. After that, training process started with using RandomizedSearchCV as hyperparameter tuning. The result will be compared and analyzed based on Accuracy, Precision, Recall, and F1- Score Evaluation Metrics. System is made with reaching 91.60% Accuracy, 92,48% Precision, 91,60% Recall, and 91,68% F1-Score."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iqrar Agalosi Nureyza
"Pengetahuan makanan tradisional adalah aspek penting dalam kehidupan manusia. Dari aspek sosial budaya, Pengetahuan terkait makanan tradisional diperlukan untuk melindungi budaya leluhur. Dari segi kesehatan, makanan tradisional memiliki kandungan bahan yang lebih baik dan alami dibandingkan dengan bahan makanan olahan seperti makanan cepat saji. Berdasarkan latar belakang ini, sebuah sistem klasifikasi otomatis makanan tradisional dikembangkan. Data diakuisisi dengan menggunakan kamera pribadi yang diambil di sebuah studio yang sudah diatur secara profesional ditambah dengan data makanan tambahan yang berasal dari internet. Total keseluruhan data yang dimiliki ada 3500 data makanan yang terbagi ke dalam 35 jenis makanan tradisional. Setiap jenis terdiri dari 100 data makanan. Data dibagi menjadi data latih dan data uji dengan perbandingan 8:2. 6 model CNN dikembangkan untuk melakukan klasifikasi pada data ini. Model yang diujicobakan adalah DenseNet121, ResNet50, EfficientNetB0, InceptionV3, Xception, dan CoAtNet0. Sebuah model generatif dikembangkan demi bisa melakukan augmentasi data pada data makanan yang ada. Hasil evaluasi mengindikasikan bahwa model CoAtNet memiliki f1 score lebih tinggi dibandingkan DenseNet121 milik peneliti sebelumnya yaitu sebesar 0.01958. Dengan nilai F1 score ini, model tersebut masih belum mampu melakukan klasifikasi makanan yang sudah ditambahkan dengan data lain. Di sisi lain, model generatif juga gagal dalam melakukan augmentasi data karena kekurangan jumlah data latih. Model yang sudah dicoba kemudian di-deploy ke aplikasi berbasis web agar dapat diuji coba oleh pengguna. Pengguna dapat menjadi kontributor dalam memberikan data latih kepada dataset yang ada melalui aplikasi web ini.

Traditional food knowledge is an important aspect of human life. From a sociocultural aspect, traditional food-related knowledge is needed to protect ancestral culture. In terms of health, traditional food has better and natural ingredients compared to processed food such as fast food. Based on this background, a traditional food classification automatic system was implemented. Data was acquired using a personal camera taken in a professionally organised studio and additional food data from the internet. In total, there are 3500 food data divided into 35 types of traditional food. Each type consists of 100 food data. The data is divided into training data and test data with a ratio of 8:2. 6 CNN models were developed to perform classification on this data. The models tested were DenseNet121, ResNet50, EfficientNetB0, InceptionV3, Xception, and CoAtNet0. A generative model was developed in order to perform data augmentation on the existing food data. The evaluation results indicate that the CoAtNet model has a higher f1 score than the previous researcher’s DenseNet121, which is 0.01958. With this F1 score, the model is still unable to classify food that has been added with other data. On the other hand, the generative model also failed to perform data augmentation due to lack of training data. The tested model was then deployed to a web-based application so that it could be tested by users. Users can become contributors in providing training data to the existing dataset through this website application."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richard Mulyadi
"Kendaraan mobil adalah salah satu kendaraan yang diminati dan digunakan oleh masyarakat dunia. Tingginya minat masyarakat terhadap mobil meningkatkan jumlah produksi kendaraan dan kendaraan yang beredar di jalan, akan tetapi di sisi lain meningkat pula variabel faktor terjadinya kecelakaan lalu lintas. Data yang diperoleh dari National Safety Council (NSC) menunjukkan sebesar 71% dari total kasus kecelakaan di tahun 2021 terjadi akibat tabrakan kendaraan bermotor dengan kendaraan bermotor lainnya dengan faktor kecelakaan speeding menyumbang persentase tertinggi yakni 29%. Salah satu cara untuk meminimalkan risiko kecelakaan adalah dengan tetap menjaga jarak aman berkendara relatif terhadap kecepatan kendaraan menggunakan prinsip aturan 3 detik atau 3-second rule. Aturan 3-detik bertujuan untuk memberikan cukup waktu bagi pengemudi untuk bereaksi apabila kendaraan di depan melakukan pengereman mendadak. Aturan ini efektif meminimalkan risiko kecelakaan, sehingga kendaraan-kendaraan modern telah dilengkapi fitur canggih seperti sistem Asistensi Anti-Tabrakan Depan atau lebih dikenal sebagai Forward Collision-Avoidance Assist (FCAA) untuk memberi peringatan visual kepada pengemudi tentang potensi tabrakan dari depan. Namun, sistem canggih ini memerlukan biaya yang tidak sedikit karena tersusun dari berbagai alat dan sensor. Untuk mengatasi tantangan biaya, perkembangan teknologi pemrosesan citra dapat menjadi solusi alternatif yang lebih murah. Pada penelitian ini, teknologi kecerdasan buatan dan pendekatan pemrosesan citra akan digunakan untuk mendeteksi jarak aman berkendara. Kombinasi dari algoritma sobel-edge detection, binary thresholding, dan model deteksi objek YOLOv8 untuk membuat program yang menampilkan safe driving area dan dapat memberi peringatan visual apabila jarak kendaraan di depan pengendara tidak memenuhi aturan jarak aman berkendara 3-detik. Performa sistem anti-tabrakan depan dievaluasi dengan observasi terhadap tingkat fluktuasi hasil deteksi safe driving area antar frame output. Umumnya, kesalahan disebabkan oleh data rekaman video yang berguncang sehingga piksel tampak blur, terdapat bayangan pada jalan, atau terdapat objek yang menutupi piksel fitur. Melalui penelitian ini, diharapkan dapat meningkatkan rasa waspada bagi pengemudi untuk tetap menjaga jarak aman berkendara yang memenuhi aturan 3-detik.

Cars are one of the vehicles that are in demand and used by people around the world. The high public interest in cars increases the number of vehicles produced and circulating on the road. Still, on the other hand, the variable factors in the occurrence of traffic accidents also increase. Data obtained from the National Safety Council (NSC) shows that 71% of the total accident cases in 2021 occurred due to motor vehicle collisions with other motor vehicles with the highest percentage being a speeding accident factor, 29%. One way to minimize the risk of accidents is while maintaining a safe driving distance relative to vehicle speed using the 3-second rule principle. The 3-second rule aims to give the driver enough time to react if the vehicle in front brakes suddenly. This rule is effective in minimizing the risk of accidents, so modern vehicles are equipped with advanced features such as the Forward-Collision Avoidance Assist (FCAA) to provide visual warnings to drivers about potential forward-collisions. However, this sophisticated system requires quite a bit of money because it is composed of various tools. To overcome cost challenges, the development of image processing technology can be a cheaper alternative solution. In this research, artificial intelligence technology and image processing approaches will be used to detect safe driving distances. A combination of the Sobel-edge detection algorithm, binary thresholding, and the YOLOv8 object detection model creates a program that displays safe driving areas and can provide a visual warning if the distance of the vehicle in front of the driver does not meet the 3-second rule of safe driving distance. The performance of the forward collision-avoidance system was evaluated by observing the level of fluctuation in safe driving area detection result between ouput frames. Generally, errors are caused by shaky video recording data so that pixels appear blurry, there are shadows on the road, or there are objects covering feature pixels. Through this research, it is hoped that it can increase the sense of alertness for drivers to maintain a safe driving distance that meets the 3-second rule."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>