Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 47 dokumen yang sesuai dengan query
cover
Ino Suryana
Abstrak :
ABSTRAK
Masalah perpindahan dan perombakan pencemar dalam air tanah dapat dimodelkan dalam bentuk sistem persamaan diferensial parsial parabolik nonlinier. Perombakan yang dimaksud adalah menghilangkan atau mengurangi pencemar sehingga tidak membahayakan bagi lingkungannya. Variabel-variabel dalam sistem persamaan diferensial parsial tersebut terdiri dari pencemar, oksigen, dan mikroorganisme. Dalam sistem ini menunjukan adanya interaksi antara pencemar, oksigen dan mikroorganisme. Interaksinya adalah dengan adanya oksigen, mikroorganisme akan berkembang biak dan mendegradasi pencemar sehingga konsentrasi pencemar akan berkurang dari keadaan sebelumnya.

Untuk menyelesaikan sistem persamaan diferensial parsial tersebut dilakukan diskritisasi. Diskritisasi ini menggunakan metoda beda hingga (finite difference). Diskritisasi dilakukan pada variabel spasial persamaan diferensial parsial, yang menghasilkan sistem persamaan diferensial biasa. Sistem persamaan diferensial biasa yang dihasilkan adalah sistem persamaan diferensial biasa nonlinier yang berukuran besar.

Penyelesaian sistem persamaan diferensial biasa di atas dilakukan dengan pendekatan numerik. Integrator yang digunakan adalah metoda multistep, prediktorkorektor. leberapa nilai solusi awal yang diperlukan disediakan oleh metoda Runge-Kutta Implisit Diagonal dari Viz. Penyelesaian ini menggunakan besar langkah yang adaptif. Besar langkah adaptif diperlukan untuk mengatasi besar kesalahan iokal (local truncation error) yang berubah-ubah pada setiap langkahnya. Implementasi dilakukan dengan menggunakan bahasa pemrograman FORTRAN 77.

Eksperimen dilakukan pada komputer pribadi dengan clock rate 120 Mhz, dengan nilai awal pencemar berkonsentrasi tinggi di bagian tengahnya yang ditunjukkan oleh ekspresi 4 *-?ill - x * x- y *_yl , oksigen dan mikroorganisme berkonsentrasi merata (homogen) pada seluruh penampang (aquifer). Konsentrasi oksigen dan mikroorganisme masing-masing adalah 4,5 dan 0,1. Waktu pengamatan selama 130 hari dan area terbagi atas grid 10x lO dengan toleransi 10-1. Hasil komputasi penyelesaian dengan metoda prediktor-korektor menunjukkan hasil yang efektif, dan waktu komputasi untuk menyelesaikan tiga titik pertama (metoda Runge-Kutta Implisit Diagonal) mendekati dua kali dari waktu yang digunakan oleh metoda prediktor-kcrektor untuk menyelesaikan titik berikutnya sampai titik terakhir (If).
1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Shampine, Laurence F.
New York: Chapman & Hall, 1994
515.352 SHA n (1)
Buku Teks  Universitas Indonesia Library
cover
Roberts, Charles E.
Englewood Cliffs, New Jersey: Prentice-Hall, 1979
515.352 ROB o
Buku Teks  Universitas Indonesia Library
cover
cover
Hairer, Ernst
New York: Springer, 2009
519.7 HAI s I
Buku Teks  Universitas Indonesia Library
cover
Ascher, Uri M., 1946-
Abstrak :
This textbook develops, analyzes, and applies numerical methods for evolutionary, or time-dependent, differential problems. Both PDEs and ODEs are discussed from a unified viewpoint. The author emphasizes finite difference and finite volume methods, specifically their principled derivation, stability, accuracy, efficient implementation, and practical performance in various fields of science and engineering. Smooth and nonsmooth solutions for hyperbolic PDEs, parabolic-type PDEs, and initial value ODEs are treated, and a practical introduction to geometric integration methods is included as well. The author bridges theory and practice by developing algorithms, concepts, and analysis from basic principles while discussing efficiency and performance issues and demonstrating methods through examples and case studies from numerous application areas.
Philadelphia: Society for Industrial and Applied Mathematics, 2008
e20450834
eBooks  Universitas Indonesia Library
cover
Linz, Peter
Abstrak :
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Philadelphia : Society for Industrial and Applied Mathematics, 1985
e20442770
eBooks  Universitas Indonesia Library
cover
Nayfeh, Ali Hasan
New York: John Wiley & Sons, 1981
Buku Teks  Universitas Indonesia Library
cover
Indra Gunawan Wibisono
Abstrak :
Persamaan Euler merupakan salah satu penyederhanaan persamaan Navier-Stokes dengan asumsi inviscid, adiabatik serta menghilangkan efek dari body force. Pada aliran kompresibel, persamaan Euler merupakan sistem pesamaan hiperbolik non-linear untuk hukum konservasi. Pada aliran kompresibel, munculnya fenomena diskontinuitas berupa gelombang kejut sering menimbulkan masalah dalam simulasi, terutama dalam hal akurasi. Pada skema Godunov, akurasi interpolasi untuk memperoleh fluks pada batas antar sel dapat ditingkatkan dengan penggunaan limiter. Salah satu limiter orde tinggi yang dapat digunakan dalam penyelesaian persamaan Euler adalah skema weighted essentially non-oscillatory (WENO). Masalah yang timbul dari penggunaan skema WENO sebagai limiter adalah beban komputasi yang sangat tinggi, terlebih jika sistem persamaan dan domain komputasi yang kompleks. Pengurangan beban komputasi dapat dilakukan dengan cara simplifikasi skema WENO itu sendiri atau dengan menggunakan skema hibrid dimana skema WENO akan digunakan pada kondisi tertentu. Pada penelitian ini dikembangkan skema hibrid orde tinggi yang mengadopsi WENO pada daerah diskontinu dengan deteksi diskontinuitas secara lokal. Metode cell-centered finite volume digunakan untuk diskretisasi ruang. Penyelesaian masalah Riemann pada batas sel digunakan skema Harten-Lax-van Leer contact (HLLC) dan Lax-Friedrichs, serta untuk integrasi waktu digunakan skema strong stability preserving Runge-Kutta orde ketiga untuk memberikan kestabilan yang baik pada skema numerik. Berdasarkan hasil yang diperoleh, skema hibrid yang dikembangkan cukup efektif digunakan dalam penyelesaian masalah aliran kompresibel. Pengurangan waktu komputasi yang signifikan dan akurasi yang baik menjadikan skema hibrid yang dikembangkan menjadi salah satu pilihan skema numerik orde tinggi yang baik untuk dapat diterapkan dalam simulasi aliran kompresibel. ...... Euler equation is a simplification of Navier-Stokes equation which assume the flows are inviscid, adiabatic, and eliminating the effects of body forces. In the compressible flow, the Euler equation is a non-linear hyperbolic conservation laws. The presence of the discontinuities phenomenon in the form of shock wave in the compressible flow often arise the problem in the simulation, mainly in the terms of accuracy. In the Godunovs scheme, the accuracy of interpolation to obtain flux at the intercell boundary can be improved by using a high order limiter. One of the high order limiter that can be used to solve the Euler equation is weighted essentially non-oscillatory (WENO) scheme. The problem that arises from the use of WENO scheme is high computational loads, moreover the system of equations or the domain are very complex. To reduce the computational cost, it can be done by simplify the WENO reconstruction or implement the hybrid scheme where the WENO scheme only applied in certain conditions. In this study, hybrid high order scheme are developed which adopt the WENO schem in the discontinuous region by detecting the local discontinuities. The cell-centered finite volume are used in the spatial discretization. Harten-Lax-van Leer contact (HLLC) and Lax-Friedrichs scheme are used to solve Riemann problem in the cell boundary, and third order strong stability preserving Runge-Kutta (SSP-RK) scheme is used for time integration to ensure the positivity and provide good stability in the numerical scheme. The results shows that the hybrid scheme developed in this work are effective for solving compressible flow problem. The significant reduction of the computational cost and the satisfactory accuracy results are make this hibrid scheme become one of the good choices of high order numerical scheme to be applied in the compressible flow simulation.
Depok: Fakultas Teknik Universitas Indonesia, 2018
T52348
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>