Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Wawan Setiawan
"Wajah merupakan salah satu bagian dari manusia yang bersifat unik. Namun demikian wajah memiliki sifat fleksibel. Secara psikologi, wajah manusia memiliki enam konfigurasi dasar : netral, gembira, sedih, marah, senyum, dan kaget. Seseorang dapat saja dikenali berdasarkan konfigurasi dasar dari wajah karena keunikannya. Dalam penelitian ini dirancang suatu sistem pengenalan wajah melalui jaringan neural buatan berbasis eigenfaces. Eigenfaces merupakan salah satu metode ekstraksi ciri dari wajah yang dapat dilakukan dengan Cara kroping holistik atau parsial. Ekstraksi ciri holistik merupakan cara pengambilan ciri wajah dengan suatu kroping yang meliputi seluruh komponen utama wajah, sedangkan ekstraksi ciri parsial merupakan cara pengambilan ciri wajah dengan kroping pada setiap komponen utama wajah. Komponen utama wajah dalam hal meliputi hidung, mata kanan, mata kiri, dan mulut. Melalui metode eigenfaces sebagai pra-prosesing, dapat diperoleh ciri wajah sebagai masukan bagi jaringan neural buatan. Sistem jaringan neural yang digunakan adalah jaringan perseptron lapis jamak dengan pembelajaran propagasi balik murni, dan gabungan swa-organisasi dan propagasi balik (hibrid). Penggunaan dua model pembelajaran ini dimaksudkan untuk membandingkan tingkat pengenalan diantaranya. Dengan melakukan perubahan metode dan pemilihan parameter tertentu seperti metode inisialisasi bobot dan bias, fungsi error, momentum, laju pembelajaran, dan jumlah neuron lapis tersembunyi, standar propagasi balik dapat ditingkatkan kemampuannya. Pembelajaran dengan jaringan hibrid meningkatkan kinerja jaringan, baik konvergensi maupun generalisasi dibanding propagasi batik murni. Namun demikian, untuk menggunakan jaringan hibrid, perlu pemilihan beberapa nilai parameter seselektif mungkin yaitu pemilihan nilai ambang, penyearah, laju pembelajaran, dan momentum. Hasil uji coba dengan kedua model pembelajaran menunjukkan bahwa eigenfaces merupakan cara yang cukup representatif untuk ekstaksi dan reduksi ciri pola wajah. Dengan mengambil eigenfaces yang besesuaian dengan nilai eigen 0.1, dengan perbandingan pola training dan testing 50% : 50%, sistem mampu mengenali sekumpulan wajah hingga di atas 90%, dan pengenalan dapat ditingkatkan lagi dengan memperbesar perbandingan poly training/testing.

The face is one of the unique parts of a human being. However, the face has a flexible nature. Psychologically, the human face has six basic configurations: neutral, happy, sad, angry, smiling, and surprised. A person can be recognized based on the basic configuration of the face because of its uniqueness. In this study, a facial recognition system was designed through an artificial neural network based on eigenfaces. Eigenfaces is one of the methods of extracting facial features that can be done by holistic or partial cropping. Holistic feature extraction is a method of taking facial features with a cropping that includes all the main components of the face, while partial feature extraction is a method of taking facial features with cropping on each main component of the face. The main components of the face in terms of nose, right eye, left eye, and mouth. Through the eigenfaces method as pre-processing, facial features can be obtained as input for the artificial neural network. The neural network system used is a multi-layer perceptron network with pure backpropagation learning, and a combination of self-organization and backpropagation (hybrid). The use of these two learning models is intended to compare the level of recognition between them. By changing the method and selecting certain parameters such as the weight and bias initialization method, error function, momentum, learning rate, and the number of hidden layer neurons, the standard backpropagation can be improved. Learning with a hybrid network improves network performance, both convergence and generalization compared to pure batik propagation. However, to use a hybrid network, it is necessary to select several parameter values ​​as selectively as possible, namely the selection of threshold values, rectifiers, learning rates, and momentum. The results of the trial with both learning models show that eigenfaces are a fairly representative way for the extraction and reduction of facial pattern features. By taking eigenfaces that correspond to an eigenvalue of 0.1, with a training and testing pattern ratio of 50%: 50%, the system is able to recognize a group of faces up to above 90%, and recognition can be improved again by increasing the poly training/testing ratio.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kanya Habibah Pramesti
"Latar Belakang: Estetika wajah merupakan hal penting yang dapat meningkatkan daya tarik dan kepercayaan diri seseorang. Salah satu indikator estetika wajah adalah profil wajah yang harmonis dan proporsional. Profil wajah merupakan salah satu hal yang pertama kali dilihat oleh ortodontis. Penilaian terhadap hal tersebut bersifat subjektif dan bergantung pada persepsi. Ortodontis perlu mempertimbangkan parameter dan persepsi pasien dalam melakukan perawatan ortodonti. Tujuan: Memperoleh nilai rerata profil wajah yang masih dikatakan lurus menurut orang awam di Indonesia berdasarkan analisis Legan dan Burstone. Metode: Penelitian ini merupakan penelitian analitik observasional dengan desain potong lintang. Subjek penelitian ini adalah orang awam laki-laki dan perempuan yang masing-masing berjumlah 78 orang. Data diuji menggunakan uji Mann-Whitney U. Hasil: Persepsi orang awam terhadap perubahan titik Sn dan Pg’ pada model laki-laki dan perempuan menunjukkan bahwa ada perbedaan yang bermakna (p<0,05). Tidak ada perbedaan yang bermakna persepsi orang awam laki-laki terhadap profil wajah model laki-laki dan perempuan dengan variasi titik Sn dan Pg’ (p>0,05). Tidak ada perbedaan yang bermakna persepsi orang awam perempuan terhadap profil wajah model laki-laki dan perempuan dengan variasi titik Sn dan Pg’ (p>0,05). Tidak ada perbedaan yang bermakna antara persepsi orang awam laki-laki dan perempuan terhadap profil wajah model laki-laki dengan variasi titik Sn dan Pg’ (p>0,05). Tidak ada perbedaan yang bermakna antara persepsi orang awam laki-laki dan perempuan terhadap profil wajah model perempuan dengan variasi titik Sn dan Pg’ (p>0,05). Kesimpulan: Rentang rata-rata profil wajah yang dikatakan lurus menurut orang awam di Indonesia berdasarkan analisis Legan dan Burstone adalah 9,23°-14,87° untuk variasi titik Sn dan 8,97°-13,96° untuk variasi titik Pg’.

Background: Facial aesthetics is an important thing that can increase a person's attractiveness and confidence. One key indicator of facial aesthetics is a harmonious and proportional facial profile, which is often the first feature assessed by orthodontists. The assessment of this is subjective and depends on perception. Orthodontists need to consider the patient's parameters and perceptions in performing orthodontic treatments. Objectives: To determine the average range of facial profiles perceived as straight by the laypeople in Indonesia based on Legan and Burstone's analysis. Methods: This study was an observational analytic with a cross-sectional design. The subjects of this study are 78 male and 78 female participants. Data were analyzed using the Mann-Whitney U test. Results: Laypeople’s perception regarding variations in Sn and Pg’ points on male and female facial models showed statistically significant differences (p<0.05). There was no statistically significant differences in male participants' perceptions of male and female facial profiles across Sn and Pg’ variations (p>0.05). There was no statistically significant differences in female participants' perceptions of male and female facial profiles with Sn and Pg’ variations (p>0.05). There was no statistically significant differences between male and female participants' perceptions of male facial profiles with Sn and Pg’ variations (p>0.05), nor of female facial profiles with Sn and Pg’ variations (p>0.05). Conclusion: The average range of facial profiles perceived as straight by the laypeople in Indonesia, based on Legan and Burstone's analysis, is 9.23°-14.87° for Sn variations and 8.97°-13.96° for Pg’ variations."
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Regina Lionnie
"Sistem pengenalan wajah yang menggunakan pendekatan klasik sejauh ini belum dapat memberikan hasil optimal jika dihadapkan pada tantangan oklusi. Tantangan oklusi yang dikaji pada penelitian ini adalah saat wajah menggunakan masker. Jika seseorang menggunakan aplikasi sistem pengenalan wajah dengan harus membuka masker terlebih dahulu di tempat umum tentunya sangat berbahaya untuk keselamatan dan kesehatan semua pihak. Sehingga dibutuhkan sistem pengenalan wajah yang memiliki performa sistem yang tinggi dengan tantangan oklusi masker. Penelitian ini membangun sistem pengenalan wajah bermasker dengan pendekatan holistic dan partial face. Metode ekstraksi fitur yang digunakan adalah penggabungan metode kurvatur yang menggunakan turunan parsial orde satu dan dua dengan metode analitik seperti gray level co-occurrence matrix (GLCM) dan multi-resolution analysis (MRA) seperti transformasi wavelet diskrit (DWT), scale-space (SS) dan wavelet packet transform (WPT). Pada penelitian ini juga ditemukan kriteria baru (keterbaruan penelitian) yang dinamakan curvature best basis (CBB) untuk memilih basis pada algoritma best basis di dalam WPT. Kriteria baru pemilihan basis terbaik bersifat dinamis dan menggunakan nilai tertinggi dari ukuran statistik standar deviasi dari kurvatur rerata pada koefisien wavelet. Basis terbaik bekerja sebagai fitur terekstraksi yang bekerja di dalam sistem pengenalan. Penelitian ini dievaluasi menggunakan dataset RFFMDS v1.0, RFFMDS v2.0 EYB, dan UBIPr. Hasil penelitian menunjukkan bahwa sistem pengenalan wajah dengan tantangan oklusi masker berhasil dibangun menggunakan pendekatan holistic dengan akurasi pengenalan sistem sebesar 98,11% dan dengan pendekatan partial face dengan akurasi sebesar 98,80%. Kedua hasil akurasi terbaik ini diperoleh dengan metode curvature best basis. Performa sistem pengenalan yang menggunakan metode curvature best basis dengan pendekatan holistic maupun partial face menunjukkan performa tertinggi dibandingkan dengan performa penelitian sebelumnya.

The face recognition system has not been able to produce satisfactory results when it applies classical approach to handle occlusion problems. This research evaluated masked face as the occlusion problem. If someone wants to use the face recognition system, he or she needs to take off the mask to accurately use the device. This becomes a risk for the safety to all party. The needs to have a stable high performance face recognition system has arisen. This research built the face recognition system with two approaches, holistic approach and partial face approach. The feature extraction method was combination of curvature of the first and second order of partial derivative and analytical methods such as gray level co-occurrence matrix (GLCM) and multi-resolution analysis (MRA) of discrete wavelet transform (DWT), scale-space (SS), and wavelet packet transform (WPT). A new dynamic criterion inside WPT has been proposed using the highest standard deviation from the mean curvature of wavelet coefficients. The single selected best basis works as extracted feature inside recognition system and it is called curvature best basis. The recognition system was evaluated using RFFMDS v1.0, RFFMDS v1.0 EYB, and UBIPr datasets. The results showed that the accuracy of the holistic approach was 98,11% and the accuracy of the partial face approach was 98,80% for the masked face recognition system. Both results derived from the proposed curvature best basis. The recognition system’s performance with curvature best basis overcome the results from previous works."
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library