Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Umar Nur Zain
Jakarta: Pustaka Sinar Harapan, 1993
070.44 UMA p
Buku Teks  Universitas Indonesia Library
cover
Silalahi, Desri Kristina
"[Penilaian kredit merupakan sistem atau cara yang digunakan oleh bank atau lembaga pembiayaan lainnya dalam menentukan calon debitur layak atau tidak mendapatkan pinjaman. Salah satu metode dalam penilaian kredit yang digunakan untuk mengklasifikasikan karakteristik calon debitur adalah Support Vector Machine (SVM). SVM mempunyai kemampuan generalisasi yang baik untuk menyelesaikan masalah klasifikasi dalam jumlah data yang besar dan dapat menghasilkan fungsi pemisah yang optimal untuk memisahkan dua kelompok data dari dua kelas yang berbeda. Salah satu keberhasilan menggunakan metode SVM adalah proses pemilihan fitur yang akan mempengaruhi tingkat akurasi klasifikasi. Berbagai metode dilakukan untuk pemilihan fitur, karena tidak semua fitur mampu memberikan hasil klasifikasi baik. Pemilihan fitur yang digunakan dalam penelitian ini adalah Variance Threshold, Univariate Chi – Square, Recursive Feature Elimination (RFE) dan Extra Trees Clasifier (ETC). Data dalam penelitian ini menggunakan data sekunder dari database dalam UCI machine learning responsitory. Berdasarkan simulasi untuk membandingkan nilai akurasi penggunaan metode pemilihan fitur pada SVM dalam klasifikasi penilaian risiko kredit, diperoleh bahwa metode Variance Threshold dan Univariate Chi – Square dapat mengurangi akurasi sedangkan metode RFE dan ETC dapat meningkatkan akurasi. Metode RFE memberikan akurasi yang lebih baik;Credit scoring is a system or method used by banks or other financial institutions to determine the debtor feasible or not get a loan. One of credit scoring method is
used to classify the characteristics of debtor is Support Vector Machine (SVM). SVM has an excellent generalization ability to solve classification problems in a large amount of data and can generate an optimal separator function to separate two groups of data from two different classes. One of the success using SVM method is dependent on features selection process that will affect the level of classification accuracy. Various methods have done to features selection, because not all the features are able to give best classification results. Features selection
that used this study is Variance Threshold, Univariate Chi - Square, Recursive Feature Elimination (RFE) and Extra Trees Classifier (ETC). Data in this study use secondary data from the database in UCI machine learning responsitory. Based on simulations to compare the accuracy of using feature selection method on SVM in classification of credit risk scoring, obtained that Variance Threshold and Univariate Chi – Square method can decrease accuracy while RFE and ETC method can increase accuracy. RFE method gives better accuracy., Credit scoring is a system or method used by banks or other financial institutions
to determine the debtor feasible or not get a loan. One of credit scoring method is
used to classify the characteristics of debtor is Support Vector Machine (SVM).
SVM has an excellent generalization ability to solve classification problems in a
large amount of data and can generate an optimal separator function to separate
two groups of data from two different classes. One of the success using SVM
method is dependent on features selection process that will affect the level of
classification accuracy. Various methods have done to features selection, because
not all the features are able to give best classification results. Features selection
that used this study is Variance Threshold, Univariate Chi - Square, Recursive
Feature Elimination (RFE) and Extra Trees Classifier (ETC). Data in this study
use secondary data from the database in UCI machine learning responsitory.
Based on simulations to compare the accuracy of using feature selection method
on SVM in classification of credit risk scoring, obtained that Variance Threshold
and Univariate Chi – Square method can decrease accuracy while RFE and ETC
method can increase accuracy. RFE method gives better accuracy.]"
Universitas Indonesia, 2015
T44513
UI - Tesis Membership  Universitas Indonesia Library
cover
Dick, Jill
London: A and C Black, 1994
808.2 DIC w
Buku Teks  Universitas Indonesia Library
cover
Cincinnati: Writer`s Digest Books, 1988
808.2 WRI
Buku Teks  Universitas Indonesia Library
cover
Lina
"Dalam makalah ini, penulis mengembangkan metodologi baru yang dinamakan dengan metode Modified Nearest Feature Line (M-NFL). Modifikasi terhadap metode NFL ini dilakkan dengan menambah jumlah garis cri dengan membentuk garis-garis baru hasil proyeksi tegak lurus dari setiap titik citra acuan yang ada terhadap garis ciri yang dibentuk oleh titik titik citra acuan dalam suatu kelas. Tujuannya adalah agar sistem dapat menangkap lebih banyak informasi dari variasi antara titik titik ciri dalam setiap kelas, sehingga tingkat pengenalan sistem akan menjadi lebih tinggi. Metode M-NFL ini akan digunakan sebagai metode klasifikasi dalam sistem penentu sudut pandang pengamatan akan ditransformasikan ke dalam ruang ciri dengan menggunakan metode transformasi Karhumen-Loeve Transformation, serta Patially 1 Kurhunen-Loeve Transformation.
Hasil eksperiman menunjukkan bahwa tingkat pengenalan sistem penentu sudut pandang dengan menggunakan Partially 2 K-LT dengan M-NFL adalah 99.68% dan utnuk sistem pengenal wajah 3-D mencapai 100% lebih tinggi dibandingkan dengan tingkat pengenalan sistem penentu sudut penadnag menggunakan 96.79% dan untuk sistem pengenal wajah 3-D mencapai 92.31%."
2004
JIKT-4-1-Mei2004-8
Artikel Jurnal  Universitas Indonesia Library
cover
Ricketson, Matthew
"Good writing engages as it informs and feature journalism offers writers the opportunity to tell deep, affecting stories that look beyond the immediate mechanics of who, what, where and when and explore the more difficult-and more rewarding- questions: how and why? Whether you're a blogger, a news journalist or an aspiring lifestyle reporter, a strong voice and a fresh, informed perspective remain in short supply and strong demand; this book will help you craft the kind of narratives people can't wait to share on their social media feeds.Writing Feature Stories established a reputation as a comprehensive, thought-provoking and engaging introduction to researching and writing feature stories. This second edition is completely overhauled to reflect the range of print and digital feature formats, and the variety of online, mobile and traditional media in which they appear.This hands-on guide explains how to generate fresh ideas; research online and offline; make the most of interviews; sift and sort raw material; structure and write the story; edit and proofread your work; find the best platform for your story; and pitch your work to editors.'A wide-ranging, much-needed master class for anyone who tells true yarns in this fast-changing journalistic marketplace' - Bruce Shapiro, Columbia University'Useful and thought provoking' - Margaret Simons, journalist and author'A must read for any digital storyteller who wants to write emotive, engaging, believable content"
London: Allen & Unwin, 2017
372.6 RIC w
Buku Teks  Universitas Indonesia Library
cover
A.S. Haris Sumadiria
Bandung: Simbiosa Rekatama Media, 2005
070.41 ASH m
Buku Teks  Universitas Indonesia Library
cover
Mandell, Judy
New York: John Wiley & Sons, Inc.q1996, 1996
808.066 MAN m
Buku Teks  Universitas Indonesia Library
cover
Weeks, Edward
Boston : Writer`s Digest Books, 1962
808.02 WEE b
Buku Teks  Universitas Indonesia Library
cover
Jacobs, Hayes B.
Cincinnati : Writer`s Digest Books, 1968
808.02 JAC c
Buku Teks  Universitas Indonesia Library
<<   1 2   >>