Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Nurma Nugraha
"Sidik jari biasanya digunakan sebagai identitas pribadi seseorang. Dalam proses pengenalan sidik jari seseorang, umumnya sidik jari dicocokkan dengan basis data yang memuat sangat banyak data sidik jari. Oleh karena itu untuk mengurangi waktu pencocokkan dan perhitungan yang kompleks pada proses penenalan sidik jari, dilakukan proses yang disebut klasifikasi sidik jari. Klasifikasi sidik jari adalah cara menentukan sebuah sidik jari masuk kedalam suatu kelas tertentu. Karakteristik sidik jari yang digunakan dalam klasifikasi sidik jari dengan menggunakan teori graf pada tesis ini adalah gambar berarah. Proses klasifikasi dimulai dengan pembentukkan graf terhubung berdasarkan gambar berarah yang telah disegmentasi berdasarkan arah yang sama. Dari graf terhubung dibangun sebuah graf yang lebih ringkas tetapi tetap memuat informasi dari graf terhubung, graf tersebut diberi nama super graf terhubung.
Pada basis data yang terdiri dari beberapa kelas sidik jari, dari masing-masing kelas diambil satu sidik jari sampel. Sidik jari sampel ini disebut model sidik jari dari tiap-tiap kelas sidik jari. Kemudian untuk proses pencocokkan dan klasifikasi, super graf dari sidik jari yang diteliti dan sidik jari model dari tiap-tiap kelas dibandingkan dengan menggunakan cost function. Kelas yang mempunyai nilai cost function minimum, akan menjadi kelas yang dipilih sebagai kelas dari sidik jari yang diteliti. Pada tesis ini dijelaskan proses pembentukkan super graf terhubung dari suatu gambar beararah.

Fingerprint is usually used as a private identity. In identifying process of someone?s fingerprint, generally, fingerprint is matched by the data base which contains many fingerprint data. Therefore, to reduce the complex matching and counting time in identifying fingerprint, we can do a process which is called fingerprint classification. Fingerprint classification is a way to show that a fingerprint is classified into one class. Fingerprint character which is used in classifying fingerprint using graph theory in this thesis is directional image. Classification process is begun by forming related graph based on directional image which has been segmented by the same direction. Related graph is built a shorter graph which contains information from connected graph which is called super graph related.
In database which consists of some fingerprints, from each class is taken one sample of fingerprint. This sample of fingerprint is called fingerprint model of each fingerprint classification. In matching and classifying process, the elaborated super graph and fingerprint model of each class are matched by using cost function. The class which has minimum cost function value will be the chosen class as elaborated fingerprint class. This thesis gives an explanation on how to construct super connected graph from a directional image."
Depok: Universitas Indonesia, 2012
T32765
UI - Tesis Open  Universitas Indonesia Library
cover
M. Karjadi
Bogor: Politea, 1976
363.2 KAR s
Buku Teks  Universitas Indonesia Library
cover
Melisa Ayu Angelina
"Smart campus telah menjadi salah satu tren teknologi yang diterapkan di berbagai universitas. Salah satu layanan yang dihasilkan dari smart campus adalah layanan berbasis lokasi (LBS) yang dapat digunakan untuk berbagai kegunaan, seperti navigasi indoor. Implementasi LBS memerlukan teknologi indoor positioning system (IPS) agar dapat menentukan posisi seseorang secara akurat dalam lingkup suatu gedung atau ruangan (indoor). Salah satu metode yang populer digunakan dalam IPS adalah fingerprinting dengan teknik mengukur received signal strength indicator (RSSI) dan menggunakan teknologi penunjang Wi-Fi. Metode fingerprinting terdiri dari dua tahap, yaitu tahap pengumpulan data fingerprint (tahap offline) dan prediksi (tahap online). Proses pengumpulan fingerprint untuk tahap offline memiliki overhead yang sangat tinggi. Pada penelitian ini, tim penulis mengemukakan IPS berbasis semi-autonomous fingerprint collection untuk mengatasi overhead yang sangat tinggi tersebut dengan menerapkan konsep smart campus. Hasil evaluasi menunjukkan bahwa IPS yang dikembangkan dapat mengurangi overhead pengumpulan fingerprint manual sebanyak 550.550 data fingerprint, dengan tingkat accuracy IPS sebesar 52%. Dengan data training yang lebih banyak dan bervariasi yang digunakan untuk melatih model machine learning, hasil eksperimen menunjukkan bahwa performa IPS semi-autonomous fingerprint collection mampu bersaing dengan IPS manual fingerprint collection.
...... Smart campus has become one of the technology trends applied in various universities. One of the services that arose due to smart campus is location-based service (LBS) which can be used for various purposes, such as indoor navigation. The implementation of LBS requires indoor positioning system (IPS) technology that determines a person's position accurately within the scope of a building or room (indoor). One of the popular methods used in IPS is fingerprinting by measuring received signal strength indicator (RSSI) and with the help of Wi-Fi technology. The fingerprinting method consists of two stages, namely the fingerprint data collection stage (offline stage) and the prediction stage (online stage). The fingerprint collection process for the offline stage has a very high overhead. In this research, the author team proposes a semi-autonomous fingerprint collection-based IPS to overcome the very high overhead using smart campus. The evaluation results show that the developed IPS can reduce the overhead of manual fingerprint collection by 550,550 fingerprint data, with an IPS accuracy level of 52%. With larger amount and more varied training data used to train the machine learning model, the experimental results show that the performance of the semi-autonomous fingerprint collection IPS can compete with the manual fingerprint collection IPS."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library