Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Yendha Putri Wulandari
Abstrak :
Pemodelan kinetika oksidasi dan pembakaran bahan bakar bensin dikembangkan untuk memperoleh bahan bakar yang rendah polutan, heating value tinggi dan aman untuk mesin. Mekanisme reaksi terdiri dari 1314 reaksi elementer dan 1006 spesies. Simulasi dilakukan pada rentang temperatur 700 K - 1000 K, tekanan 5, 12 dan 40 bar, dan rasio ekivalensi 0,8; 1,0 dan 1,5. Simulasi menghasilkan profil waktu tunda ignisi, profil konsentrasi dan profil temperatur. Hasil simulasi menunjukkan bahwa waktu tunda ignisi paling cepat tercapai pada tekanan 40 bar dan temperatur 1000 K, serta rasio ekivalensi 0,8. Profil temperatur menunjukkan energi paling besar dihasilkan pada kondisi tekanan 40 bar, temperatur 1000 K dan rasio ekivalensi 0,8. Kemudian, profil konsentrasi menunjukkan bahwa rasio ekivalensi 1,5 menghasilkan polutan CO dan CO2 paling rendah tetapi juga menghasilkan polutan toluena. Penurunan konsentrasi toluena 10% menghasilkan waktu tunda ignisi lebih cepat, polutan lebih rendah dan energi lebih rendah. Penurunan konsentrasi isooktana 10% menghasilkan waktu tunda ignisi lebih lambat dan energi lebih tinggi.
Kinetic modelling of oxidation and combustion of gasoline has developed to get fuel which are low pollutant, high heating value and safe for engine. The reaction mechanism features 1314 elementary reactions and 1006 species. Simulation is conducted at range temperature 700 K - 1000 K, pressures 5, 12 and 40 bar, and equivalence ratio 0,8; 1,0 and 1,5. The simulation produces ignition delay time profiles, fuel concentration profiles and temperature profiles. Result of simulation indicates that the fastest ignition delay time is reached at 40 bar and 1000 K, and at equivalence ratio 0,8. Temperature profiles indicate that the highest energy is produced at 40 bar, 1000 K and equivalence ratio 0,8. Then, fuel concentration profiles indicate that rich fuel mixture produces the lowest of CO and CO2 but it also produces toluene pollutant. Decreasing of 10% toluene produces faster ignition delay time, lower pollutants and lower energy. Decreasing of 10% isooctane produces slower ignition delay time and higher energy.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52187
UI - Skripsi Open  Universitas Indonesia Library
cover
Faridah Salma
Abstrak :
Kebutuhan energi dunia terus meningkat dari tahun ke tahun, dan pembakaran bahan bakar fosil juga mempunyai pengaruh negatif terhadap lingkungan karena adanya emisi gas CO2. Hidrogen mempunyai energi hasil pembakaran yang besar per satuan massa (141,86 kJ/g) sehingga penggunaannya sebagai bahan bakar cukup potensial. Indonesia adalah salah satu negara yang memiliki potensi yang sangat besar dalam pengembangan energi terbarukan sebagai sumber energi nasional dan biomassa adalah yang paling potensial untuk menjadi energi alternatif. Sehubungan dengan hal tersebut, maka dibuatlah suatu perencanaan pabrik pembuatan hidrogen dari biomass. Pada penelitian kali ini akan dijelaskan pengendalian pada Gasifier dan Char Combustor. Untuk mendapatkan kinerja yang optimum, dilakukan penyetelan pengendali dengan metode Ziegler Nichols, Lopez, dan Default, kemudian membandingkan karakteristik pengendalian seperti nilai IAE (Integral Absolute Error) ISE (Integral Square Error), Offset, dan rise time dari ketiga jenis penyetelan tersebut. Hasilnya pengendalian yang optimum pada unit Char Combustor adalah dengan metode penyetelan pengendali Ziegler Nichols dengan masing-masing nilai Kp dan Ti-nya adalah 0.77 dan 0.49.. Sedangkan metode yang paling optimum pada pengendalian suhu gasifier metode Lopez dengan nilai Kp dan Ti masing-masing 0.13 dan 1.46 dan untuk concentration control adalah metode Zieger Nichols dengan nilai Kp dan Ti masing-masing 180 dan 0.58.
World energy demand continues to increase from year to year, and the burning of fossil fuels also have a negative impact on the environment due to the emission of CO2. Hydrogen energy has great combustion per unit mass (141.86 kJ / g), so its use as a fuel is potential. Indonesia is one country that has a huge potential in the development of renewable energy as a source of national energy, and biomass are the most potential to become an alternative energy. In connection with this, the factory is planning to make hydrogen from biomass. This paper will describe the process control in Gasifier and Char combustor. To get optimum performance, controllers tuned with with Ziegler Nichols method, Lopez, and Default, then compare the characteristics of such control value IAE (Integral Absolute Error) ISE (Integral Square Error), offset, and the rise time of the three types of settings. The result is optimum control on Char combustor unit is a controller with Ziegler Nichols tuning method with its Kp and Ti each valued 0.77 and 0.49. While most optimum method of Gasifier temperature control is Lopez method with its Kp and Ti each valued 0.13 and 1.46, thus the most optimum method for concentration control is a Zieger Nichols method with its Kp and Ti each valued 180 and 0.58.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52618
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulia Mariana Tesa Ayudia Putri
Abstrak :
ABSTRAK
Kebutuhan akan listrik di Indonesia semakin meningkat, sementara bahan bakar fosil, yang selama ini menjadi sumber energi utama semakin menipis setiap tahunnya. Sumber energi pengganti yang lebih ramah lingkungan serta efisien sangat diperlukan. Fuel cell dapat mengkonversi energi kimia menjadi listrik, panas, dan air. Urea yang terdapat dalam urin merupakan salah satu komponen yang bisa digunakan sebagai bahan bakar fuel cell. Pada urea terdapat ikatan nitrogen-hidrogen yang mudah diputuskan dan menghasilkan dua molekul gas hidrogen. Apabila gas hidrogen tersebut dilepaskan maka akan menghasilkan listrik. Pada penelitian ini boron-doped diamond BDD termodifikasi dengan Nikel-Kobalt digunakan sebagai elektroda untuk produksi energi listrik dalam fuel cell. Modifikasi BDD dilakukan dengan teknik elektrodeposisi menggunakan 40 mM larutan Ni NO3 2 dan CoCl2 dengan perbandingan 4:1. Hasil pengukuran menunjukkan bahwa densitas daya sebesar 0,1429 mW cm-1 dapat diperoleh selama satu jam pengukuran dalam suhu ruang. Hasil tersebut didapatkan ketika digunakan urea 0,33 mol L-1 dan KOH mol L-1 pada ruang anoda dan H2O2 2 mol L-1 dalam H2SO4 2 mol L-1 pada ruang katoda. Dengan menggunakan kondisi yang sama, pengujian urin sebagai pengganti urea pada ruang anoda menghasilkan daya sebesar 0,0003 mW cm-1. "
" "ABSTRACT
" The need for electricity in Indonesia is increasing while fossil fuels, which have been the main source of energy, are depleting every year. Therefore it is necessary to find another energy sources that are more environmentally friendly and efficient. Fuel cells can convert chemical energy into electricity, heat, and water. Urea contained in urine is one component that can be used as fuel fuel cell. In urea there is an easy to devide nitrogen hydrogen bond, which produces two molecules of hydrogen gas. When the hydrogen gas is released it will generate electricity. In this study, nickel cobalt modified BDD was employed as an electrode to produce electrical energy in the fuel cell. The modification was performed by electrodeposition using 40 mM Ni NO3 2 and CoCl2 solutions in a ratio of 4 1. The power density of 0.1429 mW cm 1 in one hour measurement at a room temperature. The results were obtained when 0.33 mol L 1 urea in 2 mol L 1 KOH was used as a fuel in in the anode chamber, while 2 mol L 1 H2O2 in 2 mol L 1 H2SO4 was used in the cathode chamber. Replacing of urea with urine in the anodic chamber produces a power of 0.0003 mW cm 1.
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sharma, S.P.
New Delhi: Tata McGraw-Hill, 1984
662.6 SHA f
Buku Teks  Universitas Indonesia Library
cover
Danny Leonardi
Abstrak :
ABSTRAK
Sebuah penelitian komparatif berbasis simulasi telah dilakukan untuk menyesuaikan dan memvalidasi model kinetika pembakaran dari surogat biodiesel dan solar, dan untuk menggabungkan kedua model tersebut untuk memprediksi waktu tunda ignisi IDT dari campuran biodiesel dan solar nyata. Penelitian ini meliputi pengembangan model kinetika pembakaran dari surogat biodiesel dan surogat solar, penggabungan kedua model tersebut, dan validasi dengan data eksperimen IDT dari setiap bahan bakar yang bersesuaian. Model kinetika pembakaran surogat biodiesel dan solar telah disesuaikan dan divalidasi agar cocok dengan data eksperimen IDT dari metil 9-dekenoat pada tekanan 20 atm dan tiga nilai rasio ekuivalensi dengan IDT sebesar 2.7 ms pada simulasi dan 2.69 ms pada data eksperimen , dan dari n-heksadekana pada 2 - 5 atm dan rasio ekuivalensi 1.0 dengan IDT sebesar 0.37 ms dari simulasi dan 0.38 ms pada data eksperimen . Model kinetika pembakaran gabungan telah dibuat dengan memakai model surogat biodiesel dan solar untuk memprediksi IDT dari campuran biodiesel dan solar nyata. Model ini sudah divalidasi agar cocok dengan data eksperimen IDT dari campuran biodiesel dan solar nyata pada empat komposisi campuran B20, B40, B60, B80 , tekanan 1.18 atm, dan menghasilkan model yang valid dengan IDT sebesar 0.699 ms dari simulasi dan 0.69 ms pada data eksperimen .
ABSTRACT
comparative simulation based research has been set up to adjust and validate combustion kinetic models of biodiesel and solar surrogate and to combine the two models to predict ignition delay times IDT of real biodiesel and solar mixtures. This research consists of the development of combustion kinetics model for biodiesel surrogate and solar surrogate, the fusion of said models, and validation with the corresponding IDT experimental data for each fuel surrogates. Biodiesel and diesel combustion kinetic models have been adjusted and validated to fit the experimental IDT data of methyl 9 decenoate at 20 atm and three equivalence ratio values with IDT values of 2.7 ms from simulation and 2.69 ms from experimental data , and n hexadecane at pressure values of 2 5 atm and equivalence ratio of 1.0 with IDT values of 0.37 ms from simulation and 0.38 ms from experimental data . A combined combustion kinetic model has been made using biodiesel and solar surrogate models to predict the IDT of real biodiesel and solar mixtures. The model has been validated to fit the experimental IDT of real biodiesel and solar mixtures at four mixture compositions B20, B40, B60, B80 and 1.18 atm of pressure, resulting in a valid model with IDT values of 0.699 ms from simulation and 0.69 ms from experimental data .
2017
S67677
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desi Rohmaeni
Abstrak :
Saat ini kebutuhan manusia akan energi semakin meningkat. Energi berbahan bakar fosil masih menjadi sumber utama energi untuk memenuhi kebutuhan manusia. Namun, karena sifatnya yang tidak dapat diperbaharui, energi fosil tersebut lama kelamaan akan habis. Oleh karena itu diperlukan energi alternatif yang dapat diperbaharui dan juga ramah lingkungan. Energi alternatif tersebut salah satunya adalah energi surya. Energi surya dapat dikonversi menjadi energi listrik dengan menggunakan perangkat Dye-Sensitized Solar Cell (DSSC). Pada penelitian ini akan dibuat perangkat DSSC dengan menggunakan ekstrak antosianin dari kol merah sebagai dye sensitizer, TiO2 nanorod sebagai semikonduktor, larutan elektrolit (I-/I3-), serta platina sebagai elektroda pembanding. TiO2 nanorod yang digunakan untuk menyusun rangkaian DSSC disiapkan dengan cara hidrotermal dan dengan tiga variasi suhu kalsinasi diantaranya tanpa perlakuan kalsinasi, dikalsinasi pada suhu 450oC, dan dikalsinasi pada suhu 900oC. Waktu perendaman deposisi pasta TiO2 dalam dyes dilakukan selama 36 jam. Seluruh rangkaian DSSC yang disusun ditentukan efesiensinya secara fotoelektrokimia, dengan menggunakan evaluasi berdasar I – V dan didapatkan nilai efesiensi DSSC TiO2 nanorod tanpa kalsinasi, dikalsinasi pada suhu 450oC, dan dikalsinasi pada suhu 900oC berturut-turut sebesar 1,125%, 0,399%, dan 0,306%. Nilai efesiensi tertinggi didapatkan pada rangkaian DSSC TiO2 nanorod tanpa kalsinasi yaitu sebesar 1,125%
Human need for energy is increasing over time. Fossil fuel energy is still the main source of energy. However, due to its non-renewable nature, this fossil energy will run out. Therefore we need alternative energy that can be renewed as well as environmentally friendly. One of the alternative energy is solar energy. Solar energy can be converted into electrical energy using a Dye-Sensitized Solar Cell (DSSC) device. In this research, a DSSC device will be constructed using anthocyanin extract from red cabbage as a dye sensitizer, TiO2 nanorod as a semiconductor, I- / I3- redox couple as electrolyte solution, and Pt as a counter electrode. TiO2 nanorod used to assemble the DSSC device was prepared by hydrothermal method, followed by heat treatment into three variations of the calcination temperature, these were without calcination treatment, calcined at a temperature of 450oC, and calcined at a temperature of 900oC. The immersion time of TiO2 paste deposition in dyes solution for the deposition was carried out for 36 hours. The three constructed DSSCs series were tested for their efficiency using photoelectrochemical system, by evaluating their resulted the I-V curves and the efficiency values of the DSSC TiO2 nanorod without calcination, calcined at a temperature of 450oC, and calcined at 900oC were 1.125%, 0.399%, and 0.306% respectively. The highest efficiency value was obtained in the DSSC TiO2 nanorod without calcination with efficiency of 1.125%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library