Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Elita Pusparini
"ABSTRAK
Fasilitas blending mogas berfungsi untuk mencampur komponen High Octane Mogas Component HOMC dan Naphtha sehingga menghasilkan produk dalam bentuk gasoline 88 atau lebih dikenal premium. Analisa kelayakan investasi dilakukan dengan metode Net Present Value NPV yang dilakukan dalam dua cara yaitu secara konvensional dan fuzzy.Penelitian ini menggunakan software MATLAB R2016a untuk melakukan perhitungan Fuzzy NPV berbasis Distribusi Triangular. Rentang nilai yang digunakan untuk variabel yang difuzzikan adalah rendah L , medium M , dan tinggi H .Hasil perhitungan dengan pendekatan fuzzy menunjukkan nilai yang berbeda dibandingkan dengan pendekatan konvensional. Hasil perhitungan NPV menggunakan metode konvensional menghasilkan nilai 10.6995 juta USD, sedangkan berbasis Fuzzy Distribusi Triangular menghasilkan 8.8129 juta USD. Adanya perbedaan tersebut dikarenakan variasi input terhadap tingkat suku bunga, pendapatan, dan total biaya blending.

ABSTRACT
The blending mogas facility serves to mix High Octane Mogas Component HOMC and Naphtha components to produce gasoline 88 or known premium. Investment feasibility analysis is done by Net Present Value NPV method which is done in two ways, conventionally and fuzzy.This research uses MATLAB R2016a software to perform Fuzzy NPV calculation based on Triangular Distribution. The range of values used for the dif fered variables is low L , medium M , and high H .The results of calculations with the fuzzy approach show different values compared with the conventional approach. The NPV calculation results using conventional methods is 10.6995 million USD, while Fuzzy based Triangular Distribution is 8.8129 million USD. The difference is due because there are input variation to the interest rate, revenue, and total cost of blending. "
2017
T47745
UI - Tesis Membership  Universitas Indonesia Library
cover
Inry Raudiatul Fauzi
""ABSTRAK
"
Kanker merupakan penyakit penyebab kematian terbesar kedua di dunia. Menurut prediksi WHO 2015 kasus kematian akibat kanker akan meningkat menjadi 21,6 juta kasus pada tahun 2030. Salah satu usaha untuk mengurangi penyebaran kanker dengan menggunakan machine learning adalah melakukan pendeteksian jenis kanker dengan memanfaatkan microarray data. Pada umumnya, microarray data kanker terdiri dari banyak fitur. Namun, tidak semua fitur yang ada pada data kanker memiliki informasi penting. Oleh karena itu, fitur-fitur tersebut akan diekstraksi menggunakan metode Principal Component Analysis PCA . Kemudian dipilih fitur-fitur yang paling informatif dari data hasil ekstraksi PCA. Fitur-fitur terpilih dari data hasil ekstraksi akan dibentuk dalam data baru. Data sebelum dan data setelah dilakukan pemilihan fitur akan diklasifikasi menggunakan metode Fuzzy Support Vector Machines FSVM . Akurasi dari proses klasifikasi dua tahap tersebut akan dibandingkan. Pendekatan one versus one akan digunakan pada masalah klasifikasi multikelas data kanker leukemia. Dengan pendekatan tersebut akan terbentuk sebanyak k k-1 /2 masalah dua kelas, di mana k menunjukkan jumlah kelas. Hasilnya, tanpa melakukan pemilihan fitur, diperoleh akurasi tertinggi sebesar 87.69 . Setelah dilakukan pemilihan fitur, diperoleh akurasi terbaik dengan menggunakan 60 fitur dengan akurasi sebesar 96,92 .

ABSTRACT
Cancer is the second leading cause of death globally. According to WHO prediction 2015 cases of cancer deaths will increase become 21.6 million cases by 2030. One of the effort to reduce the spread of cancer by using machine learning is to detect the types of cancer. We can use microarray data to detect the types of cancer. In general, microarray cancer data consist of many features. However, not all features in cancer data have important information. Therefore, these features will be extracted by using Principal Component Analysis PCA method. Then, we select the most features who have important information of data extraction. The selected features of extracted data will be formed in the new data. Data, before and after selection will be classified using Fuzzy Support Vector Machines FSVM method. The accuracy of the classification process will be compared. The one versus one approach will be used on multiclass leukemia cancer data. This approach will formed the multiclass problem into k k 1 2 binary class problems, where k denotes the number of classes. The results, without doing feature selection, the highest accuracy is 87.69 . After doing feature selection, the best accuracy is obtained by using 60 features with the accuracy is 96.92 ."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akira Andriani
"Analisis clustering merupakan proses pengelompokan yang bertujuan untuk menemukan kelompok atau cluster yang didalamnya memiliki karakteristik yang serupa. Seiring berjalannya waktu, teknik clustering berkembang menjadi biclustering dan triclustering, di mana dalam triclustering data yang digunakan adalah data tiga dimensi. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara bersamaan yang nantinya kelompok yang dihasilkan disebut dengan tricluster. Pada penelitian ini, digunakan metode Fuzzy Cuckoo Search (FCS) untuk mengimplementasikan triclustering pada data ekspresi gen tiga dimensi. FCS mengaplikasikan konsep Fuzzy C-Means (FCM) ke dalam algoritma cuckoo search. Penggunaan fungsi objektif FCM dalam FCS dapat mengatasi ketidakjelasan (uncertainty) dalam data, khususnya pada data ekspresi gen. Dalam metode cuckoo search, pencarian ‘solusi’ tricluster digambarkan dengan spesies cuckoo yang meletakkan telur di sarang burung lain. Berbeda dengan cuckoo search pada umumnya yang menggunakan metode random walk levy flight untuk pencarian solusi, pada penelitian ini, digunakan metode lain, yaitu metode random walk distribusi gaussian, di mana hal tersebut merupakan sebuah kebaruan dalam penelitian ini. Cuckoo search dalam metode FCS merupakan metode metaheuristik, sehingga dapat digunakan dalam berbagai masalah analisis data, termasuk data ekspresi gen. Metode FCS berdasarkan distribusi gaussian diimplementasikan pada data ekspresi gen tiga dimensi dari gen otot rangka yang diberi infus IL-6, di mana ekspresi gen diamati pada 3 subjek dan 3 titik waktu yang berbeda. Metode ini dievaluasi menggunakan ukuran evaluasi Triclustering Quality Index (TQI). Dari skenario yang dilakukan, metode FCS memberikan hasil terbaik dengan rata-rata TQI terendah ketika menggunakan nilai gaussian dan probabilitas . Hasil implementasi metode FCS menunjukkan 4 tricluster yang diduga sebagai kumpulan gen yang berekspresi atas respon dari IL-6. Kelompok gen yang diperoleh dari tricluster dapat digunakan sebagai target oleh ahli medis dalam pengembangan di bidang pengobatan penyakit seperti kanker, diabetes, paru-paru, atau gagal jantung yang menargetkan gen-gen dalam kelompok tricluster tersebut.
......Clustering analysis is a grouping process that aims to find clusters such that objects in the same clusters have similar characteristics. Over time, clustering developed into biclustering and triclustering, wherein triclustering use three-dimensional dataset. Triclustering is able to group these three dimensions simultaneously and form groups called tricluster. This study used the Fuzzy Cuckoo Search (FCS) method to implement triclustering on three-dimensional gene expression data. FCS applies the Fuzzy C-means (FCM) concept to the cuckoo search algorithm. The use of the objective function of FCM in FCS can overcome the uncertainty in the data, especially in gene expression data. In the cuckoo search, finding the tricluster is described with cuckoo species laying their egg in the nests of other birds. The egg laid on the nest represents a 'solution' which is an update of the tricluster from the previous tricluster. Unlike cuckoo search in general, in this study, to find the tricluster solutions, it use gaussian random walk instead of levy flight random walk. Cuckoo search in the FCS method is a metaheuristic method, so it can be used in various data analysis problems, including gene expression data. FCS based on Gaussian distribution was implemented on three-dimensional gene expression data of skeletal muscle genes given IL-6 infusion, where the gene expression was observed in 3 subjects and 3 different time points. Of the 36 simulations performed, the FCS method gives the best results with the lowest average TQI when using gaussian values and probability . This method was evaluated using the Triclustering Quality Index (TQI) evaluation measure. The result of the implementation of FCS shows 4 triclusters which were suspected to be a collection of genes that change in response to IL-6. The gene groups obtained from the tricluster can be used as a consideration by medical professionals in the development of the treatment of diseases such as cancer, diabetes, pulmonary disease, or heart failure that target the genes in the tricluster group."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anis Gunaefi
"Jumlah produksi kartu perdana untuk pelanggan Telkom Flexi menunjukkan trend meningkat mengikuti kenaikan jumlah pelanggan dari periode satu ke periode berikutnya. Namun perusahaan juga dihadapkan dengan adanya keterbatasan sumber daya yang yang dimiliki seperti keterbatasan kapasitas BTS dan sumber daya penomoran dan ketersediaan budget. Kondisi ini memperlihatkan bahwa diperlukan suatu metode perencanaan produksi yang tepat untuk mengoptimalkan ketersediaan dan pemakaian sumber daya sehingga dihasilkan jumlah produksi yang optimal.
Metode fuzzy linear programming (FLP) dapat digunakan untuk solusi optimasi perencanaan produksi. Penerapan metode fuzzy linear programming dilakukan berdasarkan pertimbangan diperlukan adanya suatu batasan nilai terhadap jumlah produksi dengan ketersediaan sumber daya yang ada, sehingga diperoleh jumlah produksi yang optimal. Tesis ini akan menganalisa perencanaan produksi kartu perdana Flexi dengan menggunakan metode fuzzy linear programming.
......Total production of starter pack for customers Telkom Flexi showed an increasing trend followed the increase in the number of subscribers from period to period. But the company also faces resource constraints or other factors such as the capacity of BTS, numbering resources and budget availability. This condition shows that we need a proper method of production planning to optimize the availability and use of resources or other factors so that the resulting optimal amount of production output.
The method of fuzzy linear programming (FLP) can be used for production planning optimization solutions. Application of fuzzy linear programming method based on the considerations necessary to have a limit value of total production with the availability of existing resources, to obtain the optimal amount of production. This tesis will analyze the production planning of Flexi starter pack using fuzzy linear programming method."
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29591
UI - Tesis Open  Universitas Indonesia Library