Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Teddy
"Proses pembuatan jadwal kuliah merupakan kegiatan yang panjang, membosankan, serta membutuhkan waktu dan pemikiran yang cukup besar jika dilakukan secara manual. Penyelesaian masalah penjadwalan kuliah secara otomatis dengan bantuan komputer dapat mengurangi waktu dan tenaga dalam membuat jadwal kuliah dan memperkecil terjadinya kesalahan yang disebabkan human error.
Genetic algorithm (GA) merupakan salah satu algoritma local search yang bekerja dengan memori yang kecil dan sering kali dapat menemukan solusi yang masuk akal dalam state space yang sangat besar yang tidak bisa ditemukan oleh algoritma yang sistematik sehingga cocok digunakan untuk menyelesaikan masalah penjadwalan kuliah. Penjadwalan kuliah adalah masalah yang multiobjective karena banyak aspek yang menentukan baik buruknya suatu jadwal kuliah. Oleh karena itu, pada tugas akhir ini digunakan algoritma multiobjective SPEA2.
Dalam tugas akhir ini, masalah penjadwalan kuliah dimodelkan sebagai constraint satisfaction problem, lalu diselesaikan dengan GA. Terdapat hard constraint dan soft constraint dalam penjadwalan kuliah. Setiap constraint dianggap sebagai satu fungsi objektif yang mempengarui nilai fitness individu. Pada eksperimen yang dilakukan, digunakan variasi: 1) ukuran test case: kecil, sedang, besar gasal, besar genap, 2) algoritma multiobjective: SPEA2 dan aggregation based, 3) 4 representasi chromosome, 4) GA parameter: populasi, archive size, crossover type, dan mutation rate, 5) constraint aktif.
Dari hasil eksperimen, GA dapat menyelesaikan penjadwalan kuliah dengan baik karena pada hampir semua test case yang dicobakan, GA dapat menghasilkan jadwal yang memenuhi semua constraint yang ada. Selain itu, mengenai parameter GA untuk masalah penjadwalan kuliah dapat disimpulkan: algoritma multiobjective SPEA2 lebih baik dari aggregation based, populasi semakin besar semakin baik, archive size yang ideal adalah 50% dari jumlah populasi, mutation rate sangat tergantung dari panjang genome.

The process of creating a university timetable is a long and tedious work that needs much time and energy if it is done manually. Solving university timetabling problem automatically with a computer not only can reduce time and energy but also prevent human error.
Genetic algorithm (GA) is one of local search algorithm that requires little memory and can often find a reasonable solution in a very big state space search which can not be found by systematic search algorithms. Therefore, it is useful for solving timetabling problem. Timetable scheduling is a multiobjective problem because there are many aspects that determine whether a schedule is good or bad. Because of that, in this research, multiobjective algorithm SPEA2 is used.
In this reasearch, timetabling problem is represented as a constraint satisfaction problem, then solved with GA. There are hard constraints and soft constraints in university timetabling problem. Each constraint is considered as an objective function that affect fitness value of an individual. In the experiment conducted, the variation used are: 1) test case size: small, medium, large odd, large even, 2) multiobjective algorithm: SPEA2 and aggregation based, 3) four different chromosome representations, 4) GA parameters: population, archive size, crossover type, and mutation rate, 5) active constraints.
From the results of the experiment, GA can successfully solve timetabling problems because in almost all the test cases tried, GA can generate schedules that satisfy all the constraints. In addition, conclusions about the GA parameters for the timetabling problem are: multiobjective algorithm SPEA2 is better than aggregation based, the greater the population the better, the ideal archive size is 50% of the population, mutation rate is highly dependent on the length of the genome."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Vinky Halim
"Segmentasi dokumen merupakan suatu proses untuk membagi dokumen menjadi bagian-bagian yang homogen atau memiliki keterkaitan yang tinggi. Pada tugas akhir ini digunakan genetic algorithm sebagai metode untuk melakukan segmentasi dokumen. Genetic algorithm merupakan suatu algoritma pencarian solusi terhadap permasalahan dengan search space yang besar dengan menggunakan pendekatan evolusi.
Penelitian tentang segmentasi dokumen menggunakan genetic algorithm telah dilakukan oleh Lamprier (Lamprier et al., 2007) terhadap dokumen bahasa Inggris dengan hasil yang memuaskan. Pada penelitian yang dilakukan Lamprier, proses segmentasi dilakukan dengan mengoptimisasi 2 fungsi objektif yaitu internal cohesion dan dissimilarity. Data yang digunakan pada percobaan ini terdiri dari dokumen artikel media massa Indonesia dan abstrak tulisan ilmiah dari Fakultas Ilmu Komputer Universitas Indonesia.
Percobaan ini dilakukan dan dianalisa dari beberapa aspek yaitu aspek fitness function, metode penghitungan similarity, jumlah iterasi, ukuran populasi, jumlah segmen, dan kemiripan antar dokumen penyusun. Selain itu dilakukan pula perbandingan hasil segmentasi antara metode genetic algorithm dengan metode Texttiling.
Hasil percobaan yang didapat adalah segmentasi dokumen menggunakan genetic algorithm dengan fitness function SPEA 2, metode penghitungan similarity menggunakan dice coefficient, jumlah iterasi 1000 iterasi, ukuran populasi 50 individu, tipe crossover two point crossover, dan probabilitas mutasi 0.09 memberikan hasil segmentasi terbaik. Pada percobaan untuk membandingkan 2 metode segmentasi yaitu genetic algorithm dan Texttiling diperoleh hasil precision 0.081 dan recall 0.46 untuk metode genetic algorithm dan precision 0.12 dan recall 0.58 untuk metode Texttiling.
Dari data hasil percobaan diperoleh kesimpulan bahwa hasil segmentasi dengan metode Texttiling lebih baik daripada hasil segmentasi dengan metode genetic algorithm. Hasil ini bertolak belakang dengan apa yang dilaporakan pada penelitian yang dilakukan Lamprier (Lamprier et al., 2007), hal tersebut dipengaruhi oleh data dan penggunaan genetic operator yang lebih kompleks.

Document segmentation is a process to segments text into thematic homogeneous parts. The segmenting process uses genetic algorithm as a method to segment the text. Genetic algorithm is a searching algorithm for problem involving large search space by using evolution approach.
Research about document segmentation has been done by Lamprier (Lamprier et al., 2007) for English document and show satisfied results. The segmentation in Lamprier?s research uses internal cohesion and dissimilarity as objective function to be optimized. This experiments use Indonesian mass media articles and abstracts of scientific paper from Lontar System of Faculty of Computer Science University of Indonesia.
Experiments have been done and analyzed towards several aspects such as fitness function, similarity calculating method, number of iteration, number of population, number of boundary, and similarity between appended documents. Furthermore the experiment to compare genetic algorithm and other segmentation method (Texttiling) is done in the last experiment.
The experiments shows that genetic algorithm using SPEA 2 as fitness function, dice coefficient as similarity calculating method, 1000 iteration, 50 individuals in population, two point crossover, and 0.09 mutation probability gives the best result. When comparing segmentation method between genetic algorithm and Texttiling, genetic algorithm gives precision 0.081 and recall 0.46 in other hand Texttiling gives precision 0.12 and recall 0.58.
The results show that Texttiling gives better segmentation than genetic algorithm, this conclusion is diffrent with the conclusion reported by Lamprier?s research (Lamprier et al., 2007). The diffrent is related with data and genetic operator used by Lamprier?s research."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
"The 18 revised full papers presented together with 5 poster papers were carefully reviewed and selected from 46 submissions. The wide range of topics in this volume reflects the current state of research in the field, including different genres of GP (tree-based, grammar-based, Cartesian), theory, novel operators, and applications."
Berlin: Springer-Verlag, 2012
e20409836
eBooks  Universitas Indonesia Library