Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Ahmedi Ershad
"ABSTRAK
Eksplorasi dan produksi minyak dan gas bumi migas di Indonesia sampai sekarang masih terfokus pada migas konvensional dibandingkan migas nonkonvensional seperti hidrokarbon serpih. Hidrokarbon serpih adalah salah satu sumber energi migas yang terdapat di batuan induk memiliki material organik yang kaya dan telah mencapai kematangan, pada kondisi dan tipe tertentu dapat berfungsi sebagai reservoar minyak dan gas. Formasi Talang Akar adalah batuan induk dari Cekungan Jawa Barat Utara, berpotensi sebagai sistem petroleum nonkonvensional. Pada penelitian ini diintegrasikan analisis geokimia batuan induk, sifat fisika batuan dan interpretasi seismik yang menjadi dasar untuk melihat hubungan kekayaan dan kematangan material organik serta pesebarannya sebagai potensi hidrokarbon serpih di Cekungan Jawa Barat Utara. Hasil analisis geokimia batuan induk pada Formasi Talang Akar didapat tingkat kekayaan materi organik berkisar antara 0.57 ndash;1.81 wt fair-good , jendela awal kematangan pada kedalaman 3200 m dan tipe kerogen II/III menghasilkan minyak dan gas. Analisis sifat fisik batuan meliputi perhitungan Vshale, porositas, saturasi dan perhitungan TOC secara kontinu menggunakan Metode Passey untuk mengetahui nilai TOC pada setiap kedalaman pada Formasi Talang Akar. Hasil analisis selanjutnya adalah melakukan interpretasi seismik dengan metode inversi impedansi akustik model based untuk melihat persebaran batuan serpih dengan nilai 32000 ndash;54000 ft/s g/cc, arah penyebaran batuan serpih sebagai potensi hidrokarbon serpih berada di barat dan barat laut daerah penelitian. Kata Kunci:. Eksplorasi dan Produksi Migas, Hidrokarbon Serpih, Material Organik, Formasi Talang Akar, Geokimia Batuan Induk, Sifat Fisika Batuan, Inversi Seismik Impedansi Akustik

ABSTRACT
Shale Hydrocarbon Analysis Based on Geochemical and Seismic Data in Northwest Java BasinAbstract Hydrocarbon exploration and production in Indonesia until now still focused on conventional energy rather than unconventional energy, which is shale hydrocarbon. Shale hydrocarbon is one of energy which contained in source rock that has high organic richness and been reached, in specific condition could be reservoir rock. Talang Akar Formation is source rock of Northwest Java Sedimentary Basin. This research was conducted on the integration of the three methods including organic geochemical analysis, seismic interpretation and petrophysics which became the basis for the wealth of organic material see the relationship and maturity of organic material also the distribution on the potential of shale hydrocarbon in the region. The analysis of Organic Geochemistry in Talang Akar Formation obtained the level of wealth of organic matter ranged from 0.57 ndash 1.81 wt fair good , the initial maturity of the window at a depth of 3200 m and category II III kerogen type produces oil and gas. The analysis of petrophysics which include calculation of TOC based on Passey Method continuously, the results of the analysis of this petrophysics validated with the value of the laboratory analysis. The next step is doing seismic interpretation with acoustic impedance inversion method to see the spread of the shale rocks with a value 32000 ndash 54000 ft s g cc, the direction of spread of shale rocks as shale hydrocarbon potential in the West and Northwest areas of research area. Keyword Hydrocarbon exploration, unconventional energy, geochemical, shale hydrocarbon, Organic Geochemistry, Talang Akar Formation, Acoustic Impedance Seismic Inversion."
[;;, ]: 2017
T47682
UI - Tesis Membership  Universitas Indonesia Library
cover
Evi Komala Sari
"Sistem panas bumi Gunung “X” merupakan salah satu prospek panas bumi yang terletak di perbatasan antara Provinsi Jawa Tengah dan Jawa Timur, Indonesia. Hal ini diketahui dari adanya 11 manifestasi berupa air panas dan fumarol. Penelitian ini bertujuan untuk menggambarkan sistem panas bumi berdasarkan analisa terintegrasi data geologi, geokimia, petrografi dan geofisika. Metode analisis geofisika yang digunakan adalah metode gravitasi yang menggunakan data GGMplus dan metode magnetotellurik (MT). Data gravitasi GGMplus menunjukkan adanya struktur berupa patahan pada area yang diduga memiliki tingkat permeabilitas yang tinggi. Struktur yang terdeteksi pada pengolahan data gravity GGMplus juga dapat berperan sebagai struktur pengontrol keluarnya manifestasi panas bumi. Kemudian, interpretasi geokimia menunjukkan Air Panas Nglerak (APN) berada pada zona outflow yang didukung dengan hadirnya mineral alterasi klorit sedangkan fumarol Chadradimuka berada pada zona upflow yang didukung dengan adanya mineral goethite. Berdasarkan analisis gas fumarol TKC menggunakan diagram CAR-HAR, Gunung “X” memiliki rentang suhu antara 250-289 C yang mengartikan Gunung “X” memiliki entalpi yang tinggi. Dari hasil inversi 3-D magnetotellurik menunjukkan adanya pola persebaran claycap pada elevasi 500 sampai - 500 meter dengan ketebalan sekitar 1 kilometer. Persebaran claycap ini memiliki pola updome di bawah titik MT-22, MT-18 dan MT-17. Pada model konseptual terintegrasi menunjukkan pusat reservoir berada di area puncak dan mengalir secara lateral mengarah ke Barat daya sampai Barat Gunung “X”.

“X” geothermal field is one of the geothermal prospects located on the border Provinces of Central Java and East Java, Indonesia. This is known from the presence of 11 manifestations in the form of hot water and fumaroles. This study aims to describe a geothermal system based on an integrated analysis of geological, geochemical, petrographic and geophysical data. The geophysical analysis method used is the gravity method using GGMplus data and the magnetotelluric (MT) method. The GGMplus gravity data shows that there is a structure in the form of a fault in an area that is thought to have a high level of permeability. The structure detected in the GGMplus gravity data processing can also act as a controlling structure for geothermal manifestations. Then, the geochemical interpretation shows that the Nglerak Hot Spring (APN) is in the outflow zone which is supported by the presence of chlorite alteration minerals while the Chadradimuka fumaroles are in the upflow zone supported by the presence of goethite minerals. Based on TKC fumarole gas analysis using the CAR-HAR diagram, “X” geothermal field has a temperature range between 250-289 C, which means that “X” geothermal field has a high enthalpy. The results of the 3-D magnetotelluric inversion show that there is a distribution pattern of claycap at an elevation of 500 to -500 meters with a thickness around 1 kilometer. This claycap distribution has an updome pattern below the MT-22, MT-18 and MT-17 points. The integrated conceptual model shows that the center of the reservoir is in the peak area and flows laterally towards the southwest to the west of Mount "X"."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nameera Putri Ramaditha
"Daerah penelitian secara administratif berada di daerah Ganda-Ganda, Kecamatan
Petasia, Kabupaten Morowali Utara, Provinsi Sulawesi Tengah. Pelapukan batuan
ultramafik menghasilkan endapan laterit dengan karakteristik yang berbeda disetiap
daerah. Penelitian ini bertujuan untuk mengetahui karakteristik mineralogi dan geokimia
endapan nikel laterit dan batuan dasar, serta derajat laterisasi dan distribusinya pada
daerah penelitian. Data yang digunakan merupakan data lapangan dari 6 profil laterit
berupa 39 sampel batuan dan tanah, serta data assay dari analisis XRF (X-Ray
Fluorescence) dan XRD (X-Ray Diffraction). Profil laterit pada daerah penelitian terdiri
dari limonit dengan kadar Ni 0,2 – 0,47%, serta saprolit 0,23 – 0,89% (termasuk sampel
bedrock). Sampel bedrock yang merupakan bongkah batuan disekitar lapisan saprolit
secara mineralogi dianggap mewakili batuan dasar di bawah permukaan, memiliki kadar
Ni 0,56 – 0,89% dan diinterpretasikan merupakan rocky saprolite. Nikel pada limonit
secara dominan berasosiasi dengan mineral goetit dan gibsit, sementara pada saprolit
berasosiasi dengan mineral serpentin (lizardit dan antigorit), talk, olivin (forsterit dan
fayalit), dan piroksen (enstatit). Derajat laterisasi pada daerah penelitian menunjukkan
limonit mengalami moderate – strongly lateritized, saprolit kaolinitized – strongly
laterized dan Index of laterization (IOL) berkorelasi positif dengan hubungan korelasi
kuat terhadap Fe pada limonit, saprolit, dan bedrock, sementara berkorelasi negatif
terhadap Ni dengan hubungan lemah pada sampel bedrock.

The research area is administratively located in Ganda-Ganda, Petasia District,
North Morowali Regency, Central Sulawesi Province. Weathering of ultramafic rocks
produces laterite deposits with different characteristics in each area. This study aims to
determine the mineralogical and geochemical characteristics of nickel laterite deposits
and bedrock, as well as the degree of laterization and its distribution in the research area.
The data used include field data from 6 laterite profiles consisting of 39 rock and soil
samples, as well as assay data from XRF (X-Ray Fluorescence) and XRD (X-Ray
Diffraction) analyses. The laterite profiles in the study area consist of limonite with Ni
content of 0.2 – 0.47%, and saprolite with Ni content of 0.23 – 0.89% (including bedrock
samples). The bedrock samples, which are rock fragments around the saprolite layer, are
mineralogically considered to represent the bedrock beneath the surface, with Ni content
of 0.56 – 0.89% and are interpreted as rocky saprolite. Nickel in limonite is predominantly
associated with the minerals goethite and gibbsite, while in saprolite it is associated with
serpentine minerals (lizardite and antigorite), talc, olivine (forsterite and fayalite), and
pyroxene (enstatite). The degree of laterization in the study area shows that limonite is
moderately to strongly lateritized, saprolite is kaolinitized to strongly laterized, and the
Index of Laterization (IOL) positively correlates with Fe in limonite, saprolite, and
bedrock, while it negatively correlates with Ni with a weak correlation in bedrock
samples.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Awaludin Muharam
"Pulau Sulawesi bagian Utara memiliki manifestasi sumber daya emas dengan tipe endapan emas sedimen-hosted di Kecamatan Ratatotok, Kabupaten Minahasa Tenggara, Sulawesi Utara yang menjadi tempat lokasi penelitian. Tipe endapan tersebut dikontrol oleh kondisi litologi dan struktur. Tujuan dari penelitian adalah untuk menganalisis kondisi geologi bawah permukaan dan geokimia yang berhubungan dengan mineralisasi emas. Metode eksplisit dan implisit digunakan untuk membuat model geologi 3D bawah permukaan yang terdiri dari litologi dan struktur, sedangkan analisis lito-geokimia digunakan untuk menganalisis alterasi dan mineralisasi emas di prospek X. Pemodelan bawah permukaan menghasilkan tiga satuan litologi (Satuan PIR, Satuan INT, dan Satuan LMS) dan enam struktur sesar. Analisis lito-geokimia menunjukkan adanya enam alterasi (dekalsifikasi, dolomitisasi, pengayaan Fe, silisifikasi, oksidasi, dan alterasi lempung) dan unsur jejak berupa As, Sb, dan Tl yang berhubungan dengan mineralisasi emas. Tingkat mineralisasi emas paling tinggi terjadi dalam batugamping yang telah terdolomitisasi dan tersilisifikasi di sekitar struktur sesar normal S4 dan S6 dengan tiga tahapan pembentukan mineralisasi emas.

The northern part of Sulawesi Island hosts gold resources with sediment-hosted gold deposit types located in Ratatotok District, Southeast Minahasa Regency, North Sulawesi, which serves as the research location. This type of deposit is controlled by lithological and structural conditions. The aim of the study is to analyze the subsurface geological and geochemical conditions related to gold mineralization. Explicit and implicit methods were used to create a 3D subsurface geological model consisting of lithology and structures, while litho-geochemical analysis was employed to analyze alteration and gold mineralization in the X prospect. The subsurface modeling identified three lithological units (VOL Unit, INT Unit, and LMS Unit) and six fault structures. Litho-geochemical analysis revealed six types of alteration (decalcification, dolomitization, Fe enrichment, silicification, oxidation, and clay alteration) and trace elements such as As, Sb, and Tl associated with gold mineralization. The highest level of gold mineralization was found in dolomitized and silicified limestone near the S4 and S6 normal fault structures with three stages of gold mineralization formation. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tissot, B.P. (Bernard P.), 1931-
Berlin: Springer-Verlag, 1984
665.5 TIS p (1)
Buku Teks SO  Universitas Indonesia Library
cover
Harahap, Luthfan Togar
"ABSTRAK
Tahap eksplorasi masih memegang tantangan terbesar dan memiliki risiko tinggi di industri panas bumi. Karena itu, membutuhkan pemahaman yang baik tentang kondisi bawah permukaan dengan mengintegrasikan data geoscientific berkualitas tinggi. Tujuan utama eksplorasi adalah penentuan target pengeboran. Target pengeboran bawah permukaan sebenarnya diarahkan ke suhu tinggi dan zona permeabilitas tinggi. Distribusi suhu bawah permukaan dapat diperkirakan berdasarkan nilai resistivitas yang diperoleh dari data MT, sedangkan zona dengan permeabilitas tinggi dikaitkan dengan struktur geologi. Pemetaan geologis hanya bisa mengetahui geologi struktur ditunjukkan di permukaan. Namun, kelanjutan dari struktur geologi ke bawah permukaan sulit dideteksi. Penelitian ini difokuskan pada identifikasi bawah permukaan struktur geologis menggunakan data Magnetotelluric (MT). Analisis pola pemisahan atau splitting curve dari kurva MT, elongasi orientasi diagram polar, serta penggambaran struktur bawah permukaan dilakukan dengan mengacu pada hasil inversi 3 dimensi yang diperoleh dari MT, yang merupakan metode yang digunakan dalam penelitian ini serta daerah reservoir diketahui dari batas Base of Conductor. Data geologis dimasukkan sebagai data pendukung untuk membuat analisis keberadaan struktur geologi bawah permukaan menjadi lebih komprehensif. Tahap akhir dari penelitian ini adalah untuk menyediakan peta struktural terbaru yang dikonfirmasi oleh MT. Hasil analisis geokimia digunakan untuk menentukan perkiraan temperatur reservoir, sehingga dapat membantu dalam pembuatan model konseptual dan deliniasi daerah prospekTahap eksplorasi masih memegang tantangan terbesar dan memiliki risiko tinggi di industri panas bumi. Karena itu, membutuhkan pemahaman yang baik tentang kondisi bawah permukaan dengan mengintegrasikan data geoscientific berkualitas tinggi. Tujuan utama eksplorasi adalah penentuan target pengeboran. Target pengeboran bawah permukaan sebenarnya diarahkan ke suhu tinggi dan zona permeabilitas tinggi. Distribusi suhu bawah permukaan dapat diperkirakan berdasarkan nilai resistivitas yang diperoleh dari data MT, sedangkan zona dengan permeabilitas tinggi dikaitkan dengan struktur geologi. Pemetaan geologis hanya bisa mengetahui geologi struktur ditunjukkan di permukaan. Namun, kelanjutan dari struktur geologi ke bawah permukaan sulit dideteksi. Penelitian ini difokuskan pada identifikasi bawah permukaan struktur geologis menggunakan data Magnetotelluric (MT). Analisis pola pemisahan atau splitting curve dari kurva MT, elongasi orientasi diagram polar, serta penggambaran struktur bawah permukaan dilakukan dengan mengacu pada hasil inversi 3 dimensi yang diperoleh dari MT, yang merupakan metode yang digunakan dalam penelitian ini serta daerah reservoir diketahui dari batas Base of Conductor. Data geologis dimasukkan sebagai data pendukung untuk membuat analisis keberadaan struktur geologi bawah permukaan menjadi lebih komprehensif. Tahap akhir dari penelitian ini adalah untuk menyediakan peta struktural terbaru yang dikonfirmasi oleh MT. Hasil analisis geokimia digunakan untuk menentukan perkiraan temperatur reservoir, sehingga dapat membantu dalam pembuatan model konseptual dan deliniasi daerah prospek

ABSTRACT
The exploration phase still holds the biggest challenge and has a high risk in the geotermal industry. Therefore, it requires a good understanding of subsurface conditions by integrating high-quality geoscientific data. The main objective of exploration is determining drilling targets. The subsurface drilling target is actually directed to high temperature and high permeability zones. The subsurface temperature distribution can be estimated based on resistivity values ​​obtained from MT data, while zones with high permeability are associated with geological structures. Geological mapping can only know the geology of the structure shown on the surface. However, the continuation of the geological structure below the surface is difficult to detect. This study focused on the identification of subsurface geological structures using Magnetotelluric (MT) data. Analysis of splitting curve patterns from the MT curve, elongation of polar diagram orientation, and the description of subsurface structures is done by referring to the results of 3-dimensional inversion obtained from MT, which is the method used in this study and the reservoir area is known from the Base of Conductor boundary. Geological data is included as supporting data to make an analysis of the existence of subsurface geological structures more comprehensive. The final stage of this research is to provide the latest structural maps confirmed by MT. The results of the geochemical analysis are used to determine the reservoir temperature forecast, so that it can assist in making conceptual models and delineation of prospect areas.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Paris: Editins Technip, 1993
622.338 APP
Buku Teks SO  Universitas Indonesia Library