Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Irene Abigail Wisyamukti
Abstrak :
Biodiesel merupakan bahan bakar alternatif yang diperoleh melalui reaksi transesterifikasi trigliserida dalam minyak nabati dengan alkohol. Reaksi transesterifikasi trigliserida menghasikan metil ester sebagai produk biodiesel utama dan gliserol sebagai produk samping, dimana jumlah gliserol yang dihasilkan mencapai 10% dari jumlah biodiesel yang diproduksi. Pertumbuhan industri biodiesel yang pesat menyebabkan menumpuknya gliserol, yang harus dimaksimalkan pemanfaatannya demi keberlanjutan industri biodiesel. Gliserol dapat dimanfaatkan menjadi salah satu produk turunannya, yaitu senyawa solketal sebagai bioaditif pada bensin yang dapat menggantikan bahan aditif komersial. Konversi gliserol menjadi solketal dilakukan melalui reaksi ketalisasi gliserol dengan aseton menggunakan katalis ion exchanger heterogen, yaitu Amberlyst-36. Pengaruh suhu reaksi dan jumlah berat katalis yang digunakan dalam reaksi ketalisasi dipelajari dan dianalisis untuk memperoleh konversi gliserol yang maksimum. Kondisi terbaik untuk konversi gliserol menjadi solketal adalah pada suhu reaksi 60oC dan jumlah katalis sebesar 5%. Konversi gliserol yang diperoleh sebesar 80.12% dalam waktu reaksi selama 3 jam, dengan yield yang diperoleh sebesar 55.4%. Selain itu, performa solketal sebagai bioaditif pada bensin juga dipelajari dan dianalisis melalui pengujian emisi gas buang. Hasil pengujian emisi gas buang menunjukkan bahwa reaksi pembakaran yang terjadi di ruang bakar semakin sempurna untuk setiap penambahan kadar solketal di dalam bensin, dimana solketal dapat menurunkan emisi CO hingga 1%, sedangkan emisi CO2-nya meningkat hingga 1.3% dari bensin murni. Berdasarkan perhitungan energi juga menunjukkan bahwa energi yang dihasilkan dari reaksi pembakaran meningkat hingga 754.8 kJ seiring dengan penambahan solketal ke dalam bensin. ......Biodiesel is an alternative fuel obtained through transesterification reaction of triglycerides from vegetable oils with alcohols. The transesterification reaction of triglycerides produces methyl ester as the main biodiesel product and glycerol as byproduct, where the amount of glycerol produced reaches 10% of biodiesel produced. The rapid growth of biodiesel industries has produce an abundant amount of glycerol, which its utilization must be maximized for the sustainability of biodiesel industry. Glycerol can be utilized through the conversion into one of its derivatives, which is solketal as bioadditive of gasoline. The conversion of glycerol to solketal achieved thorugh glycerol ketalization with acetone using a heterogenous ion exchanger catalyst, which is Amberlyst-36. The effects of reaction temperature and the amount of catalyst used in the ketalization reaction are studied and analyzed in order to obtain the maximum glycerol conversion. The best conditions of glycerol to solketal conversion is obtained at reaction temperature of 60oC and 5% of catalyst used. The conversion obtained by these conditions is 80.12% for 3 hours of reaction, with 55.4% of solketal yield. Furthermore, solketal performance as bioadditive in gasoline also studied and analyzed through its gas emissions testing. The emission results showed that the combustion reaction occured in combustion chamber is more perfect for each solketal blend in gasoline, where the CO emission is decreased about 1% while CO2 emission is increased about 1.3% from pure gasoline. The energy calculation also showed that the amount of energy produced from combustion reaction increased up to 754.8 kJ due to the addition of solketal in gasoline.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abraham Leonardo
Abstrak :
Pada penelitian ini dilakukan konversi gliserol menjadi asam akrilat menggunakan katalis Ag(0)/HZSM-5, AgO/HZSM-5 dan Ag2O/HZSM-5 yang disintesis melalui metode impregnasi basah serta dikarakterisasi menggunakan FTIR, XRD, SEM-EDX, SAA dan TEM. Katalis dengan HZSM-5 sebagai penyangga memiliki situs asam Brønsted pada kerangkanya yang berperan dalam aplikasi reaksi dehidrasi-oksidasi gliserol. Sedangkan, logam Ag memiliki sifat redoks yang baik serta dapat meningkatkan akitivitas katalis dan selektivitasnya. Hasil analisis SEM-EDX menunjukan telah terbentuknya katalis dengan spesi perak yang tersebar secara merata. Analisis SAA menunjukan adanya penurunan luas area permukaan katalis Ag(0)/HZSM-5, AgO/HZSM-5 dan Ag2O/HZSM-5 yang dibandingkan dari luas area permukaan penyangga HZSM-5 sebesar 358,3014 m2/g menjadi 300,4281 m2/g; 341,5996 m2/g; 283,542 m2/g yang menunjukan terisinya sebagian pori-pori HZSM-5 oleh nanopartikel perak. Aplikasi reaksi dehidrasi-oksidasi gliserol pada penelitian ini dilakukan dengan memvariasi jumlah katalis, waktu dan suhu menggunakan katalis Ag(0)/HZSM-5 dan Ag2O/HZSM-5. Katalis Ag2O/HZSM-5 dengan berat 15 wt.% yang diaplikasikan pada konversi gliserol menghasilkan persen yield asam akrilat sebesar 26,4% selama 6 jam reaksi pada suhu 180 0C. ......In this research, glycerol conversion to acrylic acid was conducted using Ag(0)/HZSM-5, AgO/HZSM-5 and Ag2O/HZSM-5 catalysts that were synthesized using wet impregnation method and characterized by FTIR, XRD, SEM-EDX, SAA and TEM. The HZSM-5 catalyst has important Brønsted Acid site in its framework which plays a role in the glycerol dehydration-oxidation reaction. Meanwhile, the metallic Ag as the active site has good redox properties that can increase the catalyst activity and selectivity. The results of SEM-EDX analysis showed that the silver species was evenly distributed on the HZSM-5 support. SAA analysis showed a decrease in the surface area of HZSM-5 after impregnation with silver, from 358.3 m2/g to 300.4 m2/g, 341.6 m2/g and 283.5 m2/g for Ag(0)/HZSM-5, AgO/HZSM-5 and Ag2O/HZSM-5, respectively which indicates that silver species partially filled in to HZSM-5 pores. The glycerol dehydration-oxidation reactions were carried out by varying the amount of catalyst, reaction time and temperature using Ag(0)/HZSM-5 and Ag2O/HZSM-5 catalysts. The best reaction condition was obtained using 15 wt.% Ag2O/HZSM-5 catalyst in a 6-hour reaction at 180 0C which resulted in acrylic acid yield of 26.4%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tania Desela
Abstrak :
Modifikasi TiO2 dalam bentuk nanotube arrays dengan dopan C serta pengaruhnya dalam produksi hidrogen dan listrik dalam larutan gliserol telah diinvestigasi. TiO2 nanotube arrays disintesis dari anodisasi logam titanium dalam elektrolit gliserol yang mengandung NH4F. C-TiO2 diperoleh dengan kalsinasi-reduksi TiO2 nanotube dengan gas hidrogen. Analisis SEM menunjukkan kandungan air dalam elektrolit yang menghasilkan nanotube dengan morfologi (panjang dan diameter) yang optimal adalah sebesar 25 %. Analisis UV-Vis DRS menunjukkan C-TiO2 nanotube arrays memiliki absorbansi yang besar pada jangkauan panjang gelombang sinar tampak dibanding TiO2 nanopartikel dengan band gap energy yang turun menjadi 2,6 eV. Melalui proses fotoelektrokatalisis, hidrogen mampu dihasilkan hingga 71,37 μmol.cm-2 katalis dan listrik mampu digenerasi hingga 65,65 mV.cm-2 (2,54 mA.cm-2) setelah 4 jam pengujian. ......Modification of TiO2 nanotube arrays in the form of the dopant C and its influence in the production of hydrogen and electricity in a solution of glycerol has been investigated. TiO2 nanotube arrays were synthesized by anodizing titanium metal in glycerol electrolyte containing NH4F. C-TiO2 was obtained by annealing as-synthesized TiO2 nanotubes under reducing atmosphere (H2). SEM analysis showed the nanotubes morphology (length and diameter) are produced with the optimum water content of 25 %. UV-Vis DRS analysis demonstrated C-TiO2 nanotube arrays has a larger absorbance at a wavelength range of visible light than TiO2 nanoparticles with a band gap energy is down to 2.6 eV. Through photoelectrocatalysis, hydrogen could be produced up to 71.37 μmoles.cm-2 catalyst and electricity could be generated up to 65.65 mV.cm-2 (2.54 mA.cm-2) after 4 hours of testing.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43188
UI - Skripsi Open  Universitas Indonesia Library
cover
Abstrak :
Minyak kelapa sawit adalah minyak nabati yang memiliki potensi untuk dijadikan minyak pelumas karena secara alami minyak nabati memiliki gugus fungsi yang dapat menempel pada pada permukaan logam sehingga dapat melindungi permukaan dan mengurangi friksi. Namum, minyak kelapa sawit bila dipanaskan pada suhu tinggi dan berada dalam atmosfer udara akan mudah teroksidasi yang bisa berlanjut pada reaksi polimerisasi, yang bisa menyebabkan pembentukan resin dan deposit. Pada penelitian ini, minyak kelapa sawit akan diolah melalui beberapa tahapan proses kimia sehingga dihasilkan senyawa yang memiliki ketahanan terhadap oksidasi. Tahap pertama adalah proses transesterifikasi minyak kelapa sawtl dengan metanol dengan katalis NaOH yang menghasilkan Palm Oil Melhyl Ester. Tahap kedua adalah proses epoksidasi untuk menghilangkan ikatan rangkap pada metil ester, menjadi gugus oksirana dengan menggunakan oksidator hidrogen peroksida dan katalis asam formiat. Tahap selanjutnya adalah reaksi pembukaan cincin ester terepoksidasi dengan gliserol yang menggunakan katalis heterogen bersifat asam seperti alumina. Katalis asam diperlukan untuk membuntu pembukaan cincin epoksida bila digunakan nukleofil lemah seperti alkohol. Reaksi pembukaan cincin ini diharapkan menghasilkan produk berupa senyawa hidrokarbon jenuh dengan multi gugus fungsi berupa ester, eter dan hidroksida. Gugus fungsi tersebut bersifat polar dan dapat melindungi permukaan logam. Produk ini akan diuji karakterisasinya seperti densitas dan viskositas. Berdasarkan hasil penelitian didapatkan bahwa viskositas dan densitas dari EPOME gliserol dengan menggunakan katalis alumina tipe JRC ALO 6 dan JRC ALO 7 belum menujukkan perubahan yang signifikan bila dibandingkan dengan EPOME. Sedangkan penggunaan katalis H zeolit untuk pembuatan EPOME gliserol, didapatkan densitas dan viskositas yang lebih baik daripada dengan penggunaan katalis alumina tipe JRC ALO 6 dan JRC ALO 7.
Fakultas Teknik Universitas Indonesia, 2005
S49515
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Khaliq Fikri
Abstrak :
Dalam konversi minyak kelapa sawit menjadi biodisel, minyak kelapa sawit melalui proses transesterifikasi dengan methanol untuk membnentuk biodisel dan gliserol. Namun utilitas gliserol tidak dapat dimaksimalkan dikarenakan gliserol memiliki sedikit kegunaan dibandingkan dengan biodisel. Gliserol dapat di sintesis untuk meningkatkan nilai ekonomisnya membentuk Gliserol Monostearat (GMS) sebagai agen pengemulsi. Dalam proses esterifikasi gliserol, terdapat beberapa variabel yang mempengaruhi hasil akhir seperti temperatur, dan jenis katalis yang digunakan yaitu NaOH. Riset ini dilaksanakan nutuk memahami pengaruh temperature dan jumlah katalis untuk memproduksi produk GMS dan kemampuannya untuk mengemulsi. Proses sintesis dimulai dengan mereaksikan gliserol dengan asam stearat menggunakan NaOH sebagai katalis dan variasinya jumlah 4%, 7%, dan 9%. Temperatur yang digunakan untuk reaksi menggunakan variasi 210⁰C, 220⁰C, dan 230⁰C. Untuk uji performa, produk GMS akan di bandingkan dengan agen pengemulsi komersil yaitu lecithin dan uji performa dinilai berdasarkan variasi jumlah 1.0, 2.0, dan 3.0 grams per agen pengemulsi untuk mencampurkan air dan minyak dan waktu yang dibutuhkan untuk kedua fasa terpisah Kembali. Dari riset ini dapat di konklusikan bahwa GMS dapat disintesiskan melalui observasi proses esterifikasi, membandingkan hasil FTIR, dan properti fisik produk. Hasil GMS secara kualitatif dan quantitatif dapat terbaik ditemukan pada temperature 220⁰C dan jumlah katalis NaOH 7%. GMS juga dapat mengemulsi air dan minyak, dan dibandingkan dengan lecithin, GMS dapat mengemulsi campuran air dan minyak dari lemak hewan lebih baik. ......In the reaction to convert crude palm oil into biodiesel, it undergoes the process of transesterification of the triglycerides with methanol to form biodiesel and glycerol. The utility of glycerol is not maximized since glycerol itself is considered to have less use than its primary product of biodiesel. Glycerol itself can be synthesized further to increase its economic value, to the form of Glycerol Monostearate (GMS) as an emulsifying agent. Through the process of esterification of glycerol, there are many variables at play including the operating condition of temperature, and using the catalyst of NaOH. This research is conducted to understand the effect of temperature and amount of catalyst on the production of GMS product and its ability as an emulsifier. The process of synthesis occurs with reacting glycerol and stearic acid using NaOH as a catalyst with the variation amount of 4%, 7%, and 9%. The temperature for the operating system occurs with the variation of 210⁰C, 220⁰C, and 230⁰C. For the performance test, the GMS product is compared with a commercial emulsifier, lecithin and is tested based on the amount of 1.0, 2.0, and 3.0 grams per emulsifier used to the time after oil and water mix and how long will it take until both phases separate. From this research, the conclusion of the synthesis for GMS can be done through observation of the process, the comparison of FTIR analysis, and the product physical properties. The temperature at 220°C and amount of 7% catalyst gives the highest yield, low temperature and amount of NaOH will affect the quality of the yield and high temperature and amount of NaOH will affect the quality and quantity of the yield. The product GMS can emulsify water and oil, and in comparison, with lecithin, the product itself is better at the emulsification of water to animal fat oil.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library