Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12 dokumen yang sesuai dengan query
cover
Satria Arief Wicaksono Bakri
Abstrak :
ABSTRAK
Pada perusahaan notebook computer, mengatur inventaris komponen untuk pusat servis adalah penting. Meskipun banyak penelitian yang telah dilakukan untuk memprediksi waktu perbaikan dan volume perbaikan pada komponen notebook computer, penelitian mengenai rekognisi pola pada kerusakan komponen di notebook computer terbatas. Pada penelitian ini, dalam rangka untuk memberikan input berharga terhadap praktik manajemen inventaris pada pusat perbaikan notebook computer, riset ini berfokus pada upaya untuk merekognisi pola kerusakan komponen pada notebook computer. Sejarah perbaikan yang bersifat urutan dikumpulkan dari sebuah pusat perbaikan notebook computer di Taiwan dan dijadikan sebagai sekuen observasi pada Hidden Markov Model HMM . Sementara itu, kerusakan komponen dijadikan sebagai hidden states dari model ini. Setelah dilkaukan pre-proses data, struktur HMM yang tidak imbang ditemukan. Untuk menyelesaikan ini, algoritma cellular Genetic Algorithm cGA dengan mekanisme dominansi kromosom digunakan untuk mengestimasi HMM. Lebih lanjut, untuk meningkatkan performa dari algoritma, sebuah fitur adaptif untuk mengganti dominansi rasio kromosom dan sebuah fitur untuk mengestimasi ulang fitness value dengan menggunakan Baum-Welch Algorithm diimplementasikan. Algoritma ini kemudian disebut Adaptive cGA-BW dan setelah itu digunakan untuk mengestimasi HMM dari 2099 sekuen observasi. Sebuah studi komparatif dilakukan terhadap algoritma konvensional untik mengestimasi HMM dan varian cGA lainnya telah dilakukan. Pada penelitian ini algoritma yang diajukan memiliki performa yang lebih baik secara signifikan. Hasil ini dikonfirmasi dengan test Kruskal-Wallis. Untuk mengetahui pola keruskan komponen paling mungkin terjadi, Viterbi Algorithm digunakan untuk menerjemahkan 70 sekuen observasi paling sering terjadi dengan menggunakan model yang telah diestimasi oleh Adaptive-cGA BW.
ABSTRACT
For notebook computer companies, managing component inventory for repair service centers is vital. While there are many works performed forecast in repair time and repair volume of components, there is a limited number of research performs the pattern recognition for component failure in notebook computers. This work, in the quest of providing valuable inputs for the inventory management practice of repair service center, will focus recognizing the pattern of component failure in notebook computers. Sequential repair history was gathered from a notebook computer repair service center in Taiwan and treated as sets of observations sequences of a hidden Markov model HMM. Meanwhile, the component failure is treated as the hidden states. The pre processing of raw data is carried out and revealed an imbalanced HMM structure. To tackle this, a cellular Genetic Algorithm cGA with dominance chromosome mechanism is proposed to train the HMM. Furthermore, to enhance the performance of the proposed algorithm, an adaptive feature to switch the dominance chromosome ratio and a feature to re estimate the fitness value using Baum Welch Algorithm is proposed. This proposed algorithm is then called Adaptive cGA BW and, subsequently trained the HMM for 2099 observation sequence instances. A comparative study among conventional algorithm to train the HMM and other variants of cGA is employed. This study shows Adaptive cGA BW performed significantly better than Baum Welch Algorithm. This result is verified by Kruskal Wallis test. To understand the most probable component failure pattern, Viterbi Algorithm based on the HMM trained by Adaptive cGA BW is implemented. The algorithm decoded the 70 most occurring observation sequences to component failure patterns. These patterns are ranked by their probability of happening.
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50177
UI - Tesis Membership  Universitas Indonesia Library
cover
Leni Nur Hidayati
Abstrak :
Kebutuhan layanan multimedia berkembang dengan pesat melalui kanal radio (wireless channels) mendorong terbentuknya sistem transmisi citra nirkabel (wireless image transmission systems) baik pada kanal AWGN maupun kanal fading. Aplikasi dari transmisi citra melalui kanal nirkabel sangat menarik untuk diamati karena hal ini memerlukan desain yang seperti dari penggunaan pengkodean (coding) untuk kompresi dari citra dikarenakan keterbatasan sumber daya seperti bandwidth dan daya energi untuk transmisi. Untuk mengurangi ukuran data yang ditransmisikan digunakan teknik kompresi citra, salah satunya yaitu Run Length Encoding (RLE). Saat ini, pentingnya identifikasi biometric mengalami peningkatan seiring dengan adanya perdagangan elektronik (electronic commerce). Identifikasi tanda tangan dikembangkan secara luas sebagai salah satu metoda identifikasi biometric. Salah satu metoda identifikasi untuk tanda tangan digunakan Hidden Markov Model (HMM). Dalam tesis ini dilakukan pengenalan citra tanda tangan yang telah ditransmisikan pada kanal fading Rayleigh dengan menggunakan metode Hidden Markov Model (HMM). Sebelum ditransmisikan, citra tanda tangan dikompresi terlebih dahulu dengan menggunakan RLE. Citra tanda tangan ditransmisikan beberapa kali untuk disimpan pada basis data sedangkan pada proses pengenalan citra tanda tangan hanya ditransmisikan sekali saja untuk dijadikan sebagai citra uji. Pada tahap pembentukkan basis data, citra tanda tangan diubah menjadi vektor sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan sebagai codebook di dalam basis data. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan urutan observasi atau codeword dari setiap sample citra tanda tangan. Dengan menggunakan codebook berukuran 32, 64 dan 128 bit dengan jumlah training 10 dan 20 kali, diperoleh tingkat akurasi pengenalan citra tanda tangan pada kanal fading Rayleigh dengan tidak menggunakan kompresi RLE yaitu antara 0 sampai 36 % sedangkan yang menggunakan kompresi RLE akurasinya sebesar 60 % sampai 76 %. Rasio kompresi citra tanda tangan didapatkan antara 97,78% sampai 98,42 %. Probabilitas kesalahan simbol citra tanda tangan yang tidak menggunakan RLE yaitu 0,9749 sampai dengan 0,9762 sedangkan yang menggunakan kompresi RLE sebesar 0,6785 sampai 0,9691.
The need of multimedia services growth increasingly over wireless channels that encourage wireless image transmission systems both through AWGN or fading channel. Application from image transmission over wireless channels are very interesting to be observation because its need the good design from compression coding because the limited resource such as bandwidth and energy resource for transmission. To reduce transmission data size, image compression technique is used, such as Run Length Encoding (RLE). Recently application of biometric identification increases because of electronic commerce. Signature identification was extended as once method of biometric identification. Once of signature identification method is Hidden Markov Model (HMM). In this research recognition of transmitted signature on Rayleigh fading channels used HMM. Before transmission, signature image compressed with RLE. Signature image transmitted more once times then it?s saved at data base but at the recognition process signature image only transmitted once time as tested image. In the process of making data base, signature image changed to be vector as sample point and the nearest points will be quantized as centroid or codeword. The collection of codeword will be stored as codebook in data base. Recognition is performed by comparing the value log of probability HMM which computed base on sequences of observation or codeword each sample from signature image. Base on using codebook 32, 64 and 128 bit with 10 and 20 training, can reach performance of signature image recognition at Rayleigh fading channel if not using RLE compression is 0 % ? 36 % and if using RLE compression is 60 % - 76 % . Compression rate of signature image is 97,78% - 98,42%. Probability of symbol error of signature image which not using RLE compression is 0,9749 ? 0,9762 but if using compression RLE is 0,6785 ? 0,9691.
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27559
UI - Tesis Open  Universitas Indonesia Library
cover
Suhartati Agoes
Abstrak :
Pemrosesan sinyal genom (Genomic Signal Processing) seperti Deoxyribonucleid Acid (DNA) dan protein dapat dilakukan untuk memprediksi ekson atau coding region suatu gen. Metoda yang paling banyak digunakan adalah Hidden Markov Model (HMM) yang kaya akan struktur matematik dan berpotensi untuk mengetahui lebih banyak tentang sumber sinyal tanpa hams texsedia sumber tersebut. Pada penelitian ini dirancang struktur model yang menggunakan metoda HMM dengan struktur dasar model sesuai struktur ekson pada coding sequence (CDS) sehingga dapat memprediksi ekson DNA Plasmodium falcyarum., Jumlah state model pada struktur dasar adalah 5, 7 dan 9 sedangkan untuk struktur pengembangan ditentukan secara acak yaitu 20. 30, 50 dan 100 stare. Proses training HMM menggunakan algoritma Viterbi dan proses testing HMM menggunakan kedua algoritma yaitu Viterbi dan Baum- Welch sedangkan kinerja model menggunakan parameter Correlation Coejicienr (CC). Sekuen yang digunakan adalah 152 sekuen DNA Plasmodium falciparum dengan panjang minimum 684 pb dan maksimum 10095 pb. Hasil simulasi pada umumnya menghasilkan nilai CC rata-rata lebih baik dengan menggunakan algoritma Viterbi dibandingkan dengan algoritma Baum-Welch. Pada struktur dasar model 9 state menghasilkan nilai CC paling balk dibandingkan dengan struktur dasar model lainnya yaitu 0,7289 dengan menggunakan algoritma Viterbi dan 0,7166 dengan menggunakan algoritma Baum-Welch. Sedangkan untuk pengembangan model diperoleh nilai CC rata-rata paling baik untuk Model 2 dengan 100 store yaitu 0,7827 dengan menggunakan algoritma Baum-Welch dan 0,7820 dengan menggunakan algoritrna Viterbi. Waktu proses resting HMM rata-rata seluruh model hampir dua kali lebih lama dengan algoritma Baum-Welch dibandingkan dengan algoritma Viterbi. Genomic signal processing like as Deoxyribonucleid Acid (DNA) and protein can be done for exon prediction or coding region of the gene. The most used method is Hidden Markov Model (HMM) which has various mathematical structures and potentially capable of learning a great deal of signal source without having to have the source available. The model structure designed in this research is using the HMM method with based structure model in accordance with exon structure inthe coding sequence (CDS) in order to predict of DNA Plasmodium falciparum. The state number of model in the basic structure are 5, 7 and 9 states, meanwhile the expansions structure was randomly defined having 20, 30, S0 and 100 states. The HMM training process are using the Viterbi algorithm and the HMM testing are using both algorithms, Viterbi and Baum-Welch, meanwhile the performance indicator of the model are using the Correlation Coeflicient (CC). It is using 152 sequences -of DNA Plasmodium falciparum with the minimum length of 634 base-pair (bp) and maximum length of 10095 bp. In general, the simulation results produced the best average of CC value by using Viterbi algorithm rather then Baum-Welch. In the basic structure of 9 states model produced the best CC value compared with the other basic structure models with 0.7289 using the Viterbi Algorithm and 0.7166 using Baum-Welch. Meanwhile, for the model expansion, the best CC average value is for Model 2 with state number 100 with 0.7827 using the Baum-Welch algorithm and 0.7820 using Viterbi. The average processing time of the HMM tests for all models using the Baum-Welch algorithm are almost two times slower than using Viterbi algorithm.
Depok: Fakultas Teknik Universitas Indonesia, 2008
D1169
UI - Disertasi Open  Universitas Indonesia Library
cover
Siahaan, Michael Hasudungan
Abstrak :
Skripsi ini dilakukan sebagai penelitian untuk menganalisa proses pengenalan jenis kawanan ikan dengan metode Hidden Markov Model ( HMM ) dari pendeteksian bentuk fish schooling yang teriihat pada echogram fish finder. Hal ini didasarkan pada teori bahwa ikan mempunyai bentuk schooling atau pergerakan berkelompok dengan struktur dan irama yang unik. Data untuk proses pengenalan diperoleh dari database Balai Penelitian Departemen Kelautan dan Perikanan yang melakukan observasi di laut Jawa pada bulan Desember 2005. Dalam penelitian ini image dari kawanan ikan dengan bentuk tertentu, yang teriihat pada echogram, dibentuk ke matrix dengan sampling dan graylevel quantization kemudian diplot menjadi gelombang dengan durasi tertentu. Gelombang-gelombang tersebut diubah ke domain frekuensi menjadi bilangan vector yang disebut sample point. Kumpulan beberapa sample point terdekat dikuantisasi menjadi sebuah nilai yang disebut centroid atau codeword yang disimpan dalam sebuah codebook sebagai data base. Pada proses pengenalan dihitung besar log of probability HMM untuk semua jenis ikan berdasarkan nilai codeword dari nilai sample point ikan. Dari percobaan yang dilakukan didapatkan tingkat akurasi yang cukup tinggi untuk mendeteksi jenis schooling ikan yakni persen akurasi hingga 92%.
Depok: Fakultas Teknik Universitas Indonesia, 2006
S40701
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vincent Phandiarta
Abstrak :
Model Hidden Markov Model-GARCH(1,1) atau HMM-GARCH(1,1) adalah model runtun waktu yang berfungsi untuk memprediksi volatilitas di masa depan dengan mengelompokan volatilitas yang menggunakan konsep HMM. Model ini merupakan perluasan dari model Markov Regime Switching-GARCH(1,1) atau MRS-GARCH(1,1). Volatilitas diketahui mengikuti proses rantai markov yang tersembunyi, dimana proses rantai Markov yang dapat diobservasinya adalah return dari sebuah instrumen investasi sehingga digunakan proses hidden Markov. Pada skripsi ini, akan dibahas mengenai bentuk, metode estimasi, dan metode peramalan pada model HMM-GARCH(1,1). Pengestimasian parameter pada bagian HMM-nya menggunakan algoritma Baum-Welch dan runtun waktu akan dibagi menjadi beberapa bagian menggunakan algoritma Viterbi. Lalu parameter pada bagian GARCH(1,1)-nya akan diestimasi menggunakan metode Maximum Likelihood Estimation. Metode pengestimasian dari HMM-GARCH(1,1) ini kemudian akan diaplikasikan pada indeks Standard & Poor 500 atau S&P500. Hasilnya model HMM-GARCH(1,1) memiliki Mean Squared Error atau MSE dan Bayesian Criterion Information atau BIC yang lebih baik dari model GARCH(1,1). ......Hidden Markov Model-GARCH(1,1) or HMM-GARCH(1,1) model is a time series model to predict future volatility by dividing the level of volatility and using HMM. This model is an extension from Markov Regime Switching-GARCH(1,1) or model MRS-GARCH(1,1) model. Volatility is known to follow a hidden Markov chain process, which the observable Markov Chain is the return from an investment asset. In this undergraduate thesis, it will be discussed the structure, estimation method, and forecasting method of HMM-GARCH(1,1) model. Baum-Welch algorithm is used to estimate the HMM's parameter, and Viterbi algorithm will be used to divide the time series into some regimes. For the GARCH(1,1) part, Maximum Likelihood Estimation is used to estimate the parameter. The parameter estimation method of HMM-GARCH(1,1) will be applied to Standard & Poor 500 Index or S&P500. HMM-GARCH(1,1) have better Mean Squared Error or MSE and Bayesian Criterion Information or BIC compared to GARCH(1,1).
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ario Muhammad Fanie
Abstrak :
Skripsi ini dibuat untuk mengenali suatu jenis kawanan ikan berdasarkan perubahan fase dengan menganalisis perubahan fase dari gelombang yang dipantulkan oleh gerakan kawanan ikan. Gelombang yang diterima dari hasil pantulan tersebut akan dikenali dengan metode Hidden Markov Model (HMM) yang telah diprogram ke DSK TMS320C6713. Perubahan fase pada masing-masing kelompok ikan disebabkan oleh perbedaan pada bentuk dan bahan permukaan ikan, kecepatan ikan, serta formasi susunan ikan dalam suatu kelompok yang strukturnya mengikuti gerakan schooling suatu kawanan ikan. Dimana setiap ikan memiliki karakteristik yang unik. Pada Tahap identifikasi dengan metode HMM tingkat pengenalan bias mencapai 100% dengan menggunakan ukuran codebook 128 bit dan jumlah pelatihan 15 sample dan 7 state HMM.
This final project was made to recognize the kind of fishes from their phase changing by analyzing phase changing of the reflected waves that received from the fishes movement. The reflected waves was recognized using the Hidden Markov Model which was programmed in the DSK TMS320C6713. Phase changing in the group of fishes was caused by the difference of the fish form, the surface of the fish, the speed of the fish movement, also the formation of fish in a group that make a schooling movement. Because of that, many group of fishes could have unique characteristic. In the recognition process with Hidden Markov Model (HMM) could reach 100% accuracy using the codebook size of 128 bit, training samples of 15 data and 7 states of HMM.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40527
UI - Skripsi Open  Universitas Indonesia Library
cover
Afita Putri Lestari
Abstrak :
Darah merupakan unsur dalam tubuh manusia yang memiliki peran penting dalam mekanisme kerja tubuh. Banyak informasi penting yang terkandung dalam darah, termasuk informasi penyakit yang diderita seseorang. Pentingnya informasi tersebut ditambah kebutuhan diagnosis dini untuk mempercepat penanganan suatu penyakit, maka citra darah sangat vital sebagai media dalam proses pengenalan penyakit. Dengan menggunakan citra darah, proses pengenalan penyakit menjadi lebih mudah dan cepat karena tidak diperlukan proses reaksi kimia dengan darah. Dalam skripsi ini dilakukan perancangan proses pengenalan penyakit leukemia dari citra darah dengan menggunakan metode Hidden Markov Model (HMM). Prosesnya melibatkan dua tahap proses utama yaitu proses pembentukan database dan proses pengenalan. Pada tahap pembentukan database, citra darah diubah menjadi vector sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan berupa codebook di dalam database. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan titik sample dari setiap sample citra darah. Dengan menggunakan codebook berukuran 32, 64 dan 128 dengan jumlah repetisi 5 dan 10 kali, diperoleh tingkat akurasi pengenalan penyakit darah antara 60% sampai 82,76%.
Blood is a part of human body which plays an important role in the body mechanism. Important informations could be achieved from blood, including information of diseases. This kind of information is very essential in order to diagnose the disease as early as possible. Blood cells in digital format will be easier to analyze using computers and the process itself could be performed faster than conventional methods, since it needs no chemical reactions in the process. In this research, the disease identification for leukemia is performed from blood imageries analyzed using Hidden Markov Model (HMM). The whole process consists of two main processes: database construction and recognition. In the first process, blood image will be transformed to vectors as sample points and the nearest points will be quantized as centroids or codewords. The collection of codewords is built in codebook database. Recognition process is performed by taking the largest value of HMM?s log of probability from sample points of several blood images. Based on the simulation results, using codebook 32, 64 and 128 with repetition 5 and 10 times, the accuration levels of the recognition results are between 60% and 82.76%.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40544
UI - Skripsi Open  Universitas Indonesia Library
cover
Chandra Sasmita
Abstrak :
Skripsi ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi golongan darah melalui proses 'image processing' dengan menggunakan 'Hidden Markov Model'. Darah manusia terbagi menjadi 4 golongan menurut sistem penggolongan darah ABO. Pengolongan ini dapat dikenali dengan berbagai metode. Skripsi ini bertujuan sebagai penelitian untuk menganalisa pengenalan golongan darah manusia dalam bentuk 'Image' dengan metode 'Hidden Markov Model' (HMM) yang selanjutnya akan dihasilkan keluaran dalam bentuk probabilitas. Proses pengenalan darah dikhususkan dengan memasukkan 'image' ke dalam pemrogaman perhitungan matematis. Selanjutnya penelitian dilakukan 2 tahapan, yaitu: pembentukan 'database' dan proses pengenalan. Pada proses pembuatan 'database', gambar akan dibagi-bagi menjadi beberapa 'frame' agar lebih memudahkan proses. Setiap 'frame' diubah ke dalam domain frekuensi menjadi bilangan vektor yang disebut 'sample point'. Kumpulan beberapa 'sample point' terdekat dikuantisasi menjadi sebuah nilai yang disebut 'centroid' dan kumpulan 'centroid' ini menghasilkan sebuah 'codeword', untuk kemudian disimpan dalam sebuah 'database codebook'. Semua data dalam 'database codebook' diolah sehingga menghasilkan parameter-parameter HMM yang kemudian disimpan dalam sebuah 'database' HMM yang akan menghasilkan nilai-nilai 'log of probability' untuk setiap perbandingan target gambar dengan data pada database HMM. Data dengan nilai 'log of probability' yang paling tinggi disimpulkan sebagai keluaran dari keseluruhan proses. This final project of undergraduate program was created to design the software that could identify ABO blood type with applying Hidden Markov Model.
Human blood consist of 4 categories based on ABO blood type. This categorization can be recognized with some method, such as: Fuzzy Logic, Neural Network, Hidden Markov model. The purpose of this project was identify the human blood using special software with applying Hidden Markov Model with minimal error, so the results still can show what the reality are. We got the results from the highest probability that comes from the output of Hidden Markov Model. For better and easiest programming, we used special mathematical software. Later on, the examination was conducted in 2 steps. The 1st was to make a database and 2nd to do the identification. In the 1st step, the picture was cropped and standardized to the exact same file extension and same matrix form. We call the results as frames in which we change it over to frequency domain that hence numerical vector in which we call it as sample point. Some collection of sample point were calculated as a value that we call as centered point and the collection of these centered points was called codeword that was stored as a database codebook. All the codeword was calculated to get HMM parameter that was stored in a HMM database as log of probability value for every comparison with the target picture. Log of probability value would show the conclusion of the target picture which also means what type the blood belongs.
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40577
UI - Skripsi Open  Universitas Indonesia Library
cover
Dona Andika Sukma
Abstrak :
Skripsi ini berisi tentang pengidentifikasian biometrik melalui pola pembuluh darah telapak tangan dengan menggunakan metode Hidden Markov Model (HMM), dengan membandingkan keseluruhan sistem terhadap perubahan ukuran codebook dan jumlah iterasi. Metode HMM secara garis besar terdiri dari dua tahapan proses, yakni proses training database, dan proses identifikasi. Pada sistem pengidentifikasian ini, gambar pembuluh darah telapak tangan yang digunakan adalah gambar dari database CASIA-MS-PalmprintV1 yang dikumpulkan oleh Chinese Academy of Sciences Institute of Automation (CASIA). Gambar tersebut terlebih dahulu diolah dengan menentukan ROI. ROI yang sudah didapatkan kemudian diekstraksi dengan melakukan penambahan kontras, pengubahan gambar ke biner dan melakukan thinning terhadap garis-garis yang ada pada gambar sehingga pola pembuluh darah terlihat jelas.
This thesis contains a biometric identification through palm vein patterns using Hidden Markov Models (HMM), by comparing the overall system to changes in the size of the codebook and the number of iterations. HMM method mainly consists of two stages of the process, first one is database training process, and the identification process. This identification system is using palm vein images from Casia-MS-PalmprintV1 database that collected by the Chinese Academy of Sciences Institute of Automation (Casia). First, images are processed by determining the ROI. ROI then extracted by adding contrast, convert to binary image and do the thinning of the lines in the image so that the pattern of vein clearly visible.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1715
UI - Skripsi Open  Universitas Indonesia Library
cover
Henry Pribadi
Abstrak :
ABSTRACT
Skripsi ini menganalisa metode machine learning menggunakan Hidden Markov Model (HMM), yang merupakan alat prediksi stochastic dan probabiliti digunakan untuk mengevaluasi gerakan di dalam pasar valuta asing. Skripsi ini membahas khususnya penerapan metode HMM di pasar valuta asing sebagai alat untuk memprediksi pergerakan dan hasil dari nilai tukar di dalam pasar, kemudian menganalisis data yang tersedia, dan akhirnya membuat keputusan berdasarkan hasil yang diperoleh. Data yang digunakan adalah data harga penutupan pada pasar valuta asing AUD/USD dalam dua jangka waktu yang berbeda, harga penutupan per 1 jam dan per 15 menit, dan data yang digunakan diperoleh dari beberapa sumber online. Analisis awal menunjukkan beberapa faktor eksternal dapat mempengaruhi keakuratan hasil. Hasilnya mengindikasi, dengan tidak memperhitungkan factor-faktor luar lainnya, akurasi yang lebih baik didapat sewaktu menggunakan haraga penutupan jangka waktu yang lebih pendek.
ABSTRACT
This bachelor thesis analyses the method of machine learning using Hidden Markov Model, which is a predictive stochastic and probability tool in order to evaluate the movement inside the foreign exchange market. This paper discusses particularly the application of HMM method in the forex (foreign exchange) market, as the tool for forecasting the movement and the outcome of the exchange rate inside the market, analyses them, and finally making a decision basing on the obtained outcomes. The data used are the closing price of the AUD/USD forex market in two different timeframes, per hour closing price and per 15 minutes closing price, and was obtained from several online foreign exchange sources. Initial analysis suggests several external factors may affect the accuracy of the results. The results indicate, excluding any external factors, better accuracy was obtained when shorter closing price timeframe was used.
2016
S64506
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>