Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23 dokumen yang sesuai dengan query
cover
Zulhendra
Abstrak :
ABSTRAK
Teknologi jaringan komputer yang berkembang sangat pesat telah dapat mengintegrasikan beragam jenis komputer ke dalam satu sistem jaringan. Selanjutnya suatu sistem jaringan dapat dihubungkan dengan sistem-sistem jaringan lain menjadi sistem jaringan komputer yang luas. Perkembangan ini meningkatkan permasalahan yang dihadapi sistem jaringan komputer. Untuk mengatasi berbagai masalah yang semakin kompleks dibutuhkan sualu manajemen jaringan yang dapat diandalkan dan dapat memantau kinerja jaringan dengan mudah.

Melalui pemahaman manajemen jaringan dan kinerja jaringan dikemukakan obyek-obyek manajemen jaringan dari dalam kumpulan basis data informasi manajemennya (MIB) yang selanjutnya dipetakan ke dalam indikator kinerja jaringan komputer. Indikator kinerja jaringan dikelompokkcm berdasarkan kriteria parameter Iayanan jaringan dan parameter efisiensi jaringan. Obyek maanajemen tersebut dikumpulkan melalui metoda pemantauan dengan teknik menggunakan protokol SNMP yang merupakan kelompok protokol TCP/IP.

Pemantauan kinerja jaringan dilaksanakan di Iingkungan jaringan komputer Pusilkom UI Depok dengan kasus pemantauan terhadap simpul router jaringan yaitu komputer robin.cs.ui.ac.id Data pemantauan dapat memberi tahu jumlah pemakaian paket data, kesibukan router jaringan, jumlah kesalahan (error), dan gangguan atau kesukaran yang terjadi. Hasil pengamatan dapat memberi gambaran kinerja router jaringan roIbin.cs.ui.ac.ia dan pada beberapa kasus dapat memberi gambaran kinerja jaringan yang dipantau. Karakteristik kinerja jaringan yang dihasilkan dapat digunakan untuk pengambilan keputusan penyempurnaan. perbaikan, dan mempertahankan jaringan komputer tersebut.
1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Teuku Yuliar Arif
Abstrak :
Sepuluh tahun terakhir, jaringan Wireless Local Area Network (WLAN) yang berbasis standar IEEE 802.11 telah berkembang begitu cepat. Saat ini jaringan WLAN telah digunakan secara luas baik di lingkungan privat maupun di lingkungan publik. Pengembangan paling akhir pada amandemen standar IEEE 802.11n memperkenalkan lapisan High Throughput PHY (HT-PHY) yang menyediakan data rate hingga 600 Mbps. Peningkatan data rate tersebut dilakukan dengan menggunakan sistem transmisi Multiple Input Multiple Output (MIMO), penggunaan mekanisme spatial multiplexing, spatial mapping dan transmit beamforming, penggunaan sistem pengkodean Low Density Parity Check (LDPC) dan penggunaan mekanisme Antena Selection (ASEL). Pada lapisan HT-PHY juga digunakan Guard Interval 400 ns dan penggunaan bandwith kanal 40 MHz. Pada lapisan MAC, amandemen standar IEEE 802.11n memperkenalkan skema Aggregate MAC Service Data Unit (A-MSDU), skema Aggregate MAC Protocol Data Unit (A-MPDU) dan skema Block ACK. Skema A-MSDU melakukan agregasi multiple MSDU ke dalam sebuah frame A-MSDU. Skema A-MPDU bertujuan melakukan agregasi multiple MPDU dalam sebuah frame A-MPDU. Sementara itu skema Block ACK bertujuan melakukan agregasi frame Acknowledgement ke dalam sebuah frame Block ACK. Tujuan utama skema-skema tersebut adalah meningkatkan throughput pengiriman MSDU paling kurang 100 Mbps pada LLC/SNAP tujuan. Pada standar IEEE 802.11 juga terdapat mekanisme untuk melakukan fragmentasi MSDU sebelum ditransmisikan melalui medium wireless. Mekanisme fragmentasi dan defragmentasi MSDU ditujukan agar reliabilitas pengiriman MSDU melalui medium wireless dapat meningkat. Namun hasil studi literatur dan kajian penelitian terkait memperlihatkan bahwa mekanisme fragmentasi MSDU kurang mendapat perhatian dari para peneliti untuk meningkatkan throughput pengiriman MSDU. Untuk mengetahui perkiraan throughput MSDU yang diterima di sisi LLC/SNAP tujuan, diperlukan pemodelan matematis yang merepresentasikan mekanisme pengiriman MSDU melalui lapisan MAC dan PHY standar IEEE 802.11. Model analitikal throughput pengiriman MSDU pada standar IEEE 802.11 pertama sekali diajukan oleh Bianchi yang memodelkan proses backoff skema DCF menggunakan pendekatan Markov chain. Model Bianchi dan model-model lain yang dikembangkan dari model tersebut menggunakan asumsi bahwa pengurangan counter backoff dilakukan pada awal sebuah time slot. Penggunaan asumsi ini berdasarkan pada penjelasan dokumen standar IEEE 802.11 sebenarnya tidak tepat karena seharusnya pengurangan nilai counter backoff dilakukan pada bagian akhir dari sebuah time slot. Penggunaan asumsi pengurangan nilai counter backoff pada bagian akhir sebuah time slot menyebabkan adanya fenomena slot anomali. Slot anomali adalah slot pertama setelah keberhasilan proses transmisi frame hanya dapat digunakan oleh STA yang terakhir melakukan transmisi. STA lain tidak pernah dapat menggunakan slot tersebut. Slot anomali juga mencul ketika terjadi collision saat sebuah frame ditransmisikan. Slot backoff pertama setelah kemunculan collision tidak dapat digunakan oleh semua STA. Akibat dari adanya slot anomali ini adalah durasi transmisi frame dan collision frame bertambah lama satu slot. Tujuan penulisan disertasi ini adalah membuat model analitikal baru yang dapat digunakan untuk memperkirakan secara akurat throughput pengiriman MSDU melalui lapisan MAC dan HT-PHY standar IEEE 802.11n. Model analitikal dibuat dengan memperhatikan masalah slot anomali dan probabilitas bit error pada kanal MIMO-OFDM. Tujuan penulisan disertasi ini juga mengajukan sebuah skema baru pada laisan MAC yang dinamakan Aggregation with Fragment Retransmission plus QoS (AFR+Q). Pengiriman MSDU pada skema AFR+Q menggunakan mekanisme fragmentasi dan agregasi MSDU ke dalam sebuah frame. Frame AFR+Q ditransmisikan berdasarkan prioritas jenis trafik tertentu. Penelitian disertasi ini telah menghasilkan tiga model analitikal yang dapat memperkirakan throughput pengiriman MSDU. Pertama, menghasilkan model analitikal yang dapat memperkirakan throughput pengiriman MSDU pada lapisan MAC DCF. Kedua, menghasilkan model analitikal throughput pengiriman MSDU menggunakan skema A-MSDU, A-MPDU dan Block ACK pada lapisan MAC EDCA. Ketiga, menghasilkan skema protokol MAC AFR+Q dan skema Selective Anomalous Slot Avoidance (SASA) yang dapat menghasilkan throughput pengiriman MSDU lebih tinggi dibandingkan dengan pengiriman menggunakan skema A-MSDU, A-MPDU dan Block ACK. Hasil simulasi memperlihatkan model analitikal yang diajukan dapat memperkirakan throughput lapisan MAC dan HT-PHY standar IEEE 802.11n secara akurat. ......In the last ten years, the Wireless Local Area Network (WLAN), which is IEEE 802.11 standard-based, has developed very rapidly. Currently, the WLAN network has been used widely both in the private sector and in the public sector. The latest development in the IEEE 802.11n standard amendment is the introduction of the layer of High Throughput PHY (HT-PHY) which provides the data rate up to 600 Mbps. The increase of the data rate up to 600 Mbps at HT-PHY is done by using MIMO, using the mechanism of spatial multiplexing, spatial mapping, and transmit beamforming, using the LDPC coding system, and using the mechanism of Antenna Selection (ASEL). In the layer of HT-PHY, Guard Interval of 400 ns and channel bandwith of 40 MHz are also used. In the MAC layer of IEEE 802.11n standard amendment, the Aggregate MAC Service Data Unit (A-MSDU) scheme, the Aggregate MAC Protocol Data Unit (A-MPDU) scheme, and the Block ACK scheme are introduced. The A-MSDU scheme does aggregation of multiple MSDUs into an A-MSDU frame. The A-MPDU scheme aims to do aggregation of multiple MPDUs into an A-MPDU frame. Meanwhile, the Block ACK scheme aims to do aggregation of the Acknowledgement frame into a Block ACK frame. The main objective of those schemes is to increase the throughput of MSDU delivery at least 100 Mbps at the LLC/SNAP as the destination. In the IEEE 802.11 standard, there is also a mechanism to do MSDU fragmentation before transmitted through the wireless medium. The mechanism of MSDU fragmentation and defragmentation is aimed so that the MSDU delivery reliability through the wireless medium can increase. However, from the relevant literature study and research study, it is discovered that the MSDU fragmentation mechanism lacks attention from the researchers to increase the throughput of the MSDU delivery. To discover the MSDU throughput estimation received at destination LLC/SNAP, a mathematical modelling representing the MSDU delivery mechanism through the MAC and PHY layers of IEEE 802.11 standard is required. The analytical model of the MSDU delivery throughput in the IEEE 802.11 standard was first proposed by Bianchi who modelled the DCF scheme backoff process using the approach of Markov chain. Bianchi’s model and other models developed from the model use the assumption that the reduction of counter backoff is done at the beginning of a time slot. The use of this assumption based on the document explanation of the IEEE 802.11 standard is actually not appropriate because the reduction of the counter backoff value should be done at the end of a time slot. The use of the assumption of the counter backoff value decrement at the end of a time slot causes an anomalous slot phenomenon to appear. An anomalous slot is the first slot after the success of the frame transmission process can only be used by the last STA doing the transmission. Other STAs can never use the slot. The anomalous slot also appears when there is a collision happening when a frame is transmitted. The first backoff slot after the occurrence of a collision cannot be used by all STAs. The impact of the occurrence of this anomalous slot is the duration of the frame transmission and the frame collision becomes one-slot longer. The objective of this research is to make a new analytical model which can be used to accurately estimate the MSDU delivery throughput through the layers of MAC and HT-PHY of the IEEE 802.11n standard. The analytical model is made by paying attention to the anomalous slot problem and the probability of bit errors in the MIMO-OFDM channel. Another objective of this research is also to propose a new scheme in the MAC layer named Aggregation with Fragment Retransmission plus QoS (AFR+Q). The MSDU delivery in the AFR+Q scheme uses the mechanism of MSDU fragmentation and aggregation into a frame. The AFR+Q frame is transmitted based on the priority of certain traffic kinds. The research has produced three analytical models which can estimate the MSDU delivery throughput. First, it has produced the analytical model which can estimate the MSDU delivery throughput in the layer of MAC DCF. Second, it has produced the analytical model of the MSDU delivery throughput using the schemes of A-MSDU, A-MPDU, and Block ACK in the layer of MAC EDCA. Third, it has produced the MAC AFR+Q and Selective Anomalous Slot Avoidance (SASA) protocol scheme which can yield a higher MSDU delivery throughput than the one delivered using the schemes of A-MSDU, A-MPDU, and Block ACK. The simulation result shows that the proposed analytical model can estimate the throughput of the MAC and HT-PHY layers of the IEEE 802.11n standard accurately.
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1381
UI - Disertasi Membership  Universitas Indonesia Library
cover
Erna Sri Sugesti
Abstrak :
Pertumbuhan pengguna Internet sangat signifikan selama hampir dua dekade terakhir ini. Pertumbuhan ini didukung oleh kemudahan instalasi perangkat serta fleksibilitas aksesnya. Teknologi pendukung yang demikian itu adalah WLAN. Ekspansi area cakupan WLAN menggunakan medium serat optik membentuk jaringan hibrida yang disebut WiLANoF menemui masalah pada protokolnya. Diperlukan suatu rekayasa protokol untuk menyelesaikan masalah tersebut. Transmisi aplikasi yang berbeda memiliki persyaratan yang berbeda pula. Aplikasi elastik menggunakan protokol 802.11g DCF, sedangkan aplikasi waktu nyata menggunakan 802.11e HCCA. Untuk menjaga throughput, delay yang dihasilkan dirancang agar tidak melebihi suatu nilai tertentu yang tergantung pada persyaratan aplikasi. Dalam riset ini diusulkan prosedur komputasi 802.11b/g yang mempermudah proses desain dan pengendalian protokol DCF WiLANoF. Di samping, itu diusulkan suatu pendekatan baru yaitu optimasi TXOP menggunakan metode Knapsack untuk menghasilkan utilisasi kanal yang tinggi pada protokol HCCA. Hasil analisis penggunaan prosedur komputasi 802.11 b/g untuk aplikasi elastik pada WiLANoF menunjukkan bahwa delay bound dipengaruhi oleh kelas dan mode operasi WLAN, skema CSMA/CA serta ukuran frame. Delay pada teknologi ERP-OFDM skema basic access 483 µs dan RTS/CTS 649 µs, dicapai untuk kondisi panjang frame 1500 byte, panjang serat optik 3780 m dan timeout 43 µs. Untuk teknologi DSSS-OFDM 54 Mbps mengalami delay skema basic access 1,2 ms dan RTS/CTS 2,05 ms untuk kondisi panjang frame 1500 byte, panjang serat optik 21,7 km dan timeout 22,2 ms. Optimasi TXOP aplikasi waktu- nyata menggunakan metode Knapsack berfungsi untuk mengendalikan parameter delay sehingga utilisasi kanal maksimum dapat dicapai. Hasil yang diperoleh adalah 22 TXOP untuk 45 TU CFP dan 4 laju mandatory, sedangkan panjang serat optik mencapai 1700 m. ...... The growth of Internet users are very significant for the last two decades. This growth may be supported by the installation easiness and the access flexibility of the Internet technologies. Such supporting technologies are Wireless-Local Area Network (WLAN). The optical fiber applications in the expansion of WLAN coverage area which is then called WLAN-over-Fiber (WiLANoF) encounter some problems due to the protocols. To resolve such protocol problems, a protocol engineering is required. The transmission of different applications have different requirements. The elastic applications transmission is carried out by 802.11g DCF protocol, while the real-time applications is managed by 802.11e HCCA protocol. To maintain the network throughput, the resulting delay is designed not to exceed a certain value which depends on the application requirements. This research proposes a B/G computing procedure that simplify the design process and the control of WiLANoF DCF protocol. In addition, it is also proposed a TXOP optimation that uses Knapsack method to produce high channel utilization upon the HCCA protocol. The analysis results using the B/G computational procedures for elastic applications show that the WiLANoF delay bound is influenced by the class and the operation mode of WLAN, the CSMA/CA scheme as well as the size of the payload frames. The delay of 54 Mbps ERP-OFDM is 483 µs using the scheme of basic access, while the RTS/CTS is 649 µs. The both results are achieved under the conditions of 1500 byte frame length, 3780 m optical fiber length and the 43 µs timeout. The delay of 54 Mbps DSSS-OFDM is 1.2 ms upon the scheme of basic access, while the RTS/CTS is 2.05 ms. The last couple results are under the circumstances of 1500 bytes frame length, 21.7 km optical fiber length and 22.2 ms timeout. The TXOP optimation using the Knapsack method for real-time applications, can be used to control the delay parameter so that the maximum channel utilization can be achieved. The results obtained are 22 TXOP to 45 TU CFP and 4 mandatory rates, while the length of the optical fiber reaches 1700 m.
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1423
UI - Disertasi Membership  Universitas Indonesia Library
cover
Tetra Rachmawati
Depok: Fakultas Teknik Universitas Indonesia, 1993
S38642
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S38634
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S37738
UI - Skripsi Membership  Universitas Indonesia Library
cover
Duma Henny PN
Depok: Fakultas Teknik Universitas Indonesia, 1994
S38682
UI - Skripsi Membership  Universitas Indonesia Library
cover
Forouzan, Behrouz A.
Bosto: McGraw-Hill , 2003
004.6 FOR l
Buku Teks  Universitas Indonesia Library
cover
Ciampa, Mark
Singapore : Course Technology Cengage Learning, 2013
004.68 CIA c;004.68 CIA c (2)
Buku Teks  Universitas Indonesia Library
cover
Bayu Perwira Warjiyo
Abstrak :
Kebutuhan telekomunikasi akan layanan berbasis data, suara, dan video terus mengalami peningkatan. Salah satu terobosan telekomunikasi untuk menjawab kebutuhan ini adalah Metro Ethernet. Metro Ethernet dapat digunakan dalam jaringan 3G. Metro Ethernet adalah pengembangan dari Ethernet. Berbagai kelebihan dari Ethernet juga terdapat pada Metro Ethernet, dengan skala yang berbeda. Selain itu, ada pengembangan dari sistem yang banyak digunakan sekarang, yaitu SDH, untuk mengakomodasi kebutuhan layanan data. Sistem tersebut adalah Ethernet over Synchronous Digital Hierarchy. Analisa dibatasi pada pengunaannya pada jaringan akses 3G. Kedua sistem ini mempunyai kelebihan dan kekurangan bila dibandingkan satu sama lain. Metro Ethernet memiliki kelebihan pada sisi biaya operasional, skalabilitas, dan efisiensi transport. Ethernet over SDH memiliki kelebihan pada sisi biaya pembangunan dan reliabilitas.
Telecommunications needs for services based data, voice, and video continues to increase. One of the telecom breakthrough to address this need is Metro Ethernet. Metro Ethernet can be used in 3G networks. Metro Ethernet is the development of Ethernet. Various advantages of Ethernet is also available on Metro Ethernet, with different scales. In addition, there is the development of systems that are widely used today, namely SDH, to accommodate the needs of data services. The system is Ethernet over Synchronous Digital Hierarchy. Analysis is limited to its use on the 3G access networks. Both of these systems has advantages and disadvantages when compared with each other. Metro Ethernet has advantages on the side of the operating cost, scalability, and efficiency of transport. Ethernet over SDH has an advantage in the cost of construction and reliability.
Depok: Fakultas Teknik Universitas Indonesia, 2012
S44026
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3   >>