Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17 dokumen yang sesuai dengan query
cover
Nugroho Widodo
Depok: Fakultas Teknik Universitas Indonesia, 1998
S39375
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sawitri Darmiati
Jakarta: UI Publishing, 2023
618.190 SAW b
Buku Teks SO  Universitas Indonesia Library
cover
Putri Utami
"[ABSTRAK
Kanker payudara adalah tumor ganas yang tumbuh akibat pertumbuhan sel-sel
jaringan yang tidak normal pada jaringan payudara. Kanker payudara pada wanita
merupakan penyakit yang kini paling banyak diderita dibandingkan jenis kanker
lainnya. Cara yang dilakukan agar penyakit ini tidak memiliki kesempatan untuk
menyebar adalah dengan mendeteksinya sedini mungkin dengan menggunakan
mammografi.
Pada penelitian ini penulis telah merancang suatu sistem yang menggunakan
komputer untuk mendeteksi dan mengklasifikasi kanker payudara pada citra
mammogram. Citra mammogram yang digunakan adalah citra mammogram dari
Mommographic Image Analysis Society (MIAS) yang terdiri dari 322 citra.
Pengolahan awal citra pada sistem ini menggunakan metode Otsu Thresholding,
pendeteksian tepi dengan menggunakan metode Canny, dan metode dilasi. Ciri
yang digunakan pada sistem ini adalah Gray Level Co-occurrence Matrix
(GLCM) dan Discrete Wavelet Transform (DWT). Metode pengklasifikasian yang
digunakan pada penelitian ini adalah Support Vector Machine (SVM).
Sistem memiliki ketahanan yang baik terhadap noise salt and pepper pada nilai
noise tertentu pada tiap jenis citra mammogram yang digunakan. Tingkat
keakuratan berkisar 80% pada saat diberi noise sebesar -16dB pada citra
mammogram jinak dan ganas. Keakuratan sistem juga teruji cukup baik untuk
jumlah data latih yang hanya sebesar 70% dimana tingkat keakuratan
pendeteksian dan pengklasifikasian adalah sebesar 80,6%.

ABSTRACT
Breast cancer is a malignant tumor that grows as a result of the growth of tissue
cells that are not normal in the breast tissue. Breast cancer in women is a disease
that is now the most common cancer than other types. How that is done so that the
disease does not have a chance to spread is to detect it as early as possible by
using mammography.
In this study, the authors have designed a system that uses a computer to detect
and classify breast cancer on a mammogram image. Mammogram image has been
taken from Mommographic Image Analysis Society (MIAS) which consists of 322
images. Initial processing images on this system using Otsu Thresholding, edge
detection using Canny method, and the method of dilation. Features used in this
system is the Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet
Transform (DWT). Claassification method was used in this study is Support
Vector Machine (SVM).
The system has good resistance to salt and pepper noise on certain noise value for
each type of mammogram image are used. The accuracy range was 80% when
given the noise of -16dB on mammogram images of benign and malignant. The
accuracy of the system was also tested well enough for the amount of training data
that only 70% where the level of detection and classification accuracy is 80,6 %.;Breast cancer is a malignant tumor that grows as a result of the growth of tissue
cells that are not normal in the breast tissue. Breast cancer in women is a disease
that is now the most common cancer than other types. How that is done so that the
disease does not have a chance to spread is to detect it as early as possible by
using mammography.
In this study, the authors have designed a system that uses a computer to detect
and classify breast cancer on a mammogram image. Mammogram image has been
taken from Mommographic Image Analysis Society (MIAS) which consists of 322
images. Initial processing images on this system using Otsu Thresholding, edge
detection using Canny method, and the method of dilation. Features used in this
system is the Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet
Transform (DWT). Claassification method was used in this study is Support
Vector Machine (SVM).
The system has good resistance to salt and pepper noise on certain noise value for
each type of mammogram image are used. The accuracy range was 80% when
given the noise of -16dB on mammogram images of benign and malignant. The
accuracy of the system was also tested well enough for the amount of training data
that only 70% where the level of detection and classification accuracy is 80,6 %., Breast cancer is a malignant tumor that grows as a result of the growth of tissue
cells that are not normal in the breast tissue. Breast cancer in women is a disease
that is now the most common cancer than other types. How that is done so that the
disease does not have a chance to spread is to detect it as early as possible by
using mammography.
In this study, the authors have designed a system that uses a computer to detect
and classify breast cancer on a mammogram image. Mammogram image has been
taken from Mommographic Image Analysis Society (MIAS) which consists of 322
images. Initial processing images on this system using Otsu Thresholding, edge
detection using Canny method, and the method of dilation. Features used in this
system is the Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet
Transform (DWT). Claassification method was used in this study is Support
Vector Machine (SVM).
The system has good resistance to salt and pepper noise on certain noise value for
each type of mammogram image are used. The accuracy range was 80% when
given the noise of -16dB on mammogram images of benign and malignant. The
accuracy of the system was also tested well enough for the amount of training data
that only 70% where the level of detection and classification accuracy is 80,6 %.]"
2015
T42928
UI - Tesis Membership  Universitas Indonesia Library
cover
Irfan Musmarliansyah
"Penampakan mikrokalsifikasi dalam citra mammography sebagai suatu indikasi terjadinya kanker payudara seringkali menjadi kendala pendiagnosisan penyakit kanker. Variasi bentuk dan ukuran kalsifikasi serta kehomogenan dengan latar belakang tekstur merupakan faktor utama yang sering menjadi masalah dalam pengamatan visual biasa.
Pemanfaatan Computer Aided Diagnosis (CAD) dalam bidang pengolahan citra memungkinkan suatu citra mamography diolah dan dianalisa dalam bentuk digital untuk mengurangi kendala dalam hal pendeteksian mikrokalsifikasi.
Teknik pendeteksian mikrokalsifikasi serta unjuk kerjanya dengan menggunakan transformasi wavelet, peningkatan kontras citra dan metode statistik meliputi perhitungan skewness dan kurtosis pada citra mammography digital akan diterapkan dalam tesis ini, dimana hasil pendeteksian tersebut dijadikan sebagai "second opinion" bagi ahli radiologis dalam diagnosisnya.
Hasil simulasi menunjukan secara visual bahwa unjuk kerja pendeteksian mikrokalsifikasi dengan teknik yang diterapkan mempunyai tingkat keefektifan hingga 96%.

The presence of clustered micro-calcifications is an early sign of breast cancer, however it's difficult to detect. Variation of shape and size of calcification is the main problem for detection process, beside the homogenous texture background.
Computer-aided diagnosis (CAD) schemes on image processing have the potential of substantially increasing diagnostic accuracy in mammography.
Performance of wavelet transform, enhance algorithm and statistical procedure for detection method are presented in this thesis as a second opinion for radiologist's interpretation of micro-calcifications.
The simulation results show visually that detecting method was applied has 96% in an effectiveness level."
Depok: Fakultas Teknik Universitas Indonesia, 2000
T4640
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahmadi Kurnia
"ABSTRAK
Keburaman dan ketidakjelasan batas citra sangat mempengaruhi hasil pengamatan medic terutama untuk identifikasi penyakit. Karena itu meningkatkan kontras citra dan menajamkan batas citra merupakan suatu cara agar dapat memperoleh hasil citra rekonstruksi yang lebih baik.
Detektor edge detection dan filterisasi Gauss adalah salah satu cara untuk menambah pencahayaan pada citra dan meningkatkan ketajaman sisi citra. Dengan menggunakan transformasi wavelet proses manipulasi piksel-piksel citra tersebut menjadi cukup mudah untuk dilaksanakan.
Perhitungan nilai selisih citra dan perbandingan presentase citra dapat digunakan untuk mengukur seberapa jauh tingkat pencahayaan dari citra rekonstruksi. Semakin tinggi nilai selisih dan presentase maka semakin baik citra rekonstruksi.

ABSTRACT
Blurring image is a fundamental problem for mammogram images. In case this trouble always takes some difficulty for medical purposes. So, edge detection of images and increase their contrast is one way to solve this problem.
Edge detector and gaussian's filter are manipulated to enhance an original image. Some of manipulation of pixels can be easily done by wavelet transform to get reconstruction images. Difference analysis and percentage analysis are used to determine the criteria of resulting image.
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Michelle Nasseri
"ABSTRAK
Latar belakang: Mamografi merupakan pemeriksaan baku emas dan merupakan modalitas satu-satunya untuk skrining payudara perempuan. Namun efektivitas mamografi menurun terutama pada payudara berdensitas padat. Handheld ultrasonography (HHUS) sering diperlukan sebagai pelengkap mamografi dan dapat meningkatkan sensitivitas dan spesifisitas untuk deteksi kanker payudara berdensitas padat. Automated breast ultrasound (ABUS) merupakan modalitas relatif baru dengan beberapa kelebihan dibandingkan dengan HHUS antara lain reproducible, variabilitas yang rendah, waktu akuisisi lebih singkat dan konsisten, serta ukuran transduser yang lebar sehingga mencakup payudara lebih menyeluruh dan dapat melakukan karakterisasi lesi yang ukurannya melebihi lebar transduser HHUS dengan lebih baik. Saat ini penggunaan ABUS belum merata di rumah sakit di Indonesia, dan penelitian mengenai ABUS masih terbatas, sehingga perlu dilakukan penelitian mengenai ABUS dibandingkan dengan modalitas lain secara lebih obyektif. Tujuan : Penelitian ini bertujuan untuk mengetahui kesesuaian temuan, morfologis, dan lokasi lesi di payudara berdasarkan densitas mamografi dan HHUS dengan densitas mamografi dan ABUS. Metode: Dilakukan pemeriksaan payudara menggunakan mamografi, HHUS GE tipe Logic S8 dengan transduser linear 7-12 MHz, dan ABUS GE Invenia dengan transduser konkaf linear 6-12 MHz. Seluruh pemeriksaan HHUS dan ABUS dilakukan sendiri oleh peneliti di Departemen Radiologi RSCM, dan dikonfirmasi oleh Dokter Spesialis Radiologi konsultan payudara bersertifikasi ABUS untuk menentukan ada atau tidaknya lesi, morfologis, dan lokasi lesi. Kesesuaian hasil pemeriksaan mamografi-ABUS dan mamografi HHUS dianalisis menggunakan uji Mc Nemar. Hasil: Terdapat 30 subyek penelitian dan diperoleh 48 sampel payudara, dengan rentang usia 36-66 tahun (rerata ± SD 51,4 ± 8,5 tahun). Dalam menentukan ada tidaknya lesi, pemeriksaan mamografi-HHUS dan mamografi-ABUS memiliki kesesuaian dengan level sedang (moderate agreement), nilai Kappa 0,43 dan 0,49 (p 0,002 dan p 0,001); dalam menentukan morfologis lesi memiliki kesesuaian dengan level sedang (moderate agreement) dengan nilai Kappa 0,51 dan 0,43 (p 0,000 dan 0,000); serta dalam menentukan lokasi lesi memiliki kesesuaian dengan level fair agreement dengan nilai Kappa 0,37 dan 0,36 (p 0,000 dan 0,000). Simpulan: Kombinasi mamografi-HHUS memiliki kesesuaian dengan level relatif setara dalam menentukan ada tidaknya lesi dan lokasi lesi, namun sedikit lebih tinggi dalam menilai morfologis lesi dibandingkan dengan kombinasi mamografi-ABUS.

ABSTRACT
Background: Mammography is the gold standard and well known to be a powerful screening tool in the detection of breast cancer. However its sensitivity is reduced in women with dense breasts. Additionally, women with dense breasts have an increased risk of developing breast cancer while mammography has a lower sensitivity.
Handheld ultrasonography (HHUS) is often needed as a adjunction to mammography, can increase sensitivity and specificity for detection of cancer in dense breast breasts. Automated breast ultrasound (ABUS) is a relative new modality with several advantages compared to HHUS including reproducible, low variability, shorter and consistent acquisition time, and a wide transducer size that covers the breast more thoroughly and can characterize lesions whose size exceeds the width of the transducer HHUS better. At present the use of ABUS is not evenly distributed in hospitals in Indonesia, and research on ABUS is still limited, so it is necessary to conduct research on ABUS compared to other modalities more objectively. Objective : This study aims to determine the alternative selection of HHUS and ABUS examination to detect abnormalities in the breast based on mammographic density. Method: Breast examination using mammography, HHUS GE Logic S8 with 7-12 MHz linear transducer, and GE Invenia ABUS with 6-12 MHz linear concave transducer. All HHUS and ABUS examinations are carried out solely by researchers in the Radiology Department of the RSCM, and are confirmed by an ABUS certified breast consultant radiologist to determine the presence, morphology, and location of the lesion. The suitability of ABUS mammography and HHUS mammography results were analyzed using the Mc Nemar test. Result: There were 30 subjects and 48 breast samples were obtained, with an age range of 36-66 years (mean ± SD 51.4 ± 8.5 years). In determining the presence or absence of lesions, examination of mammography-HHUS and mammography-ABUS is in accordance with moderate agreement and Kappa values 0.43 and 0.49 (p 0.002 and p 0.001); in determining the morphology of the lesion is in accordance with moderate agreement and Kappa value 0.51 and 0.43 (p 0,000 and 0,000); and in determining the location of the lesion is in accordance with fair agreement and Kappa values ​​of 0.37 and 0.36 (p 0,000 and 0,000). Conclusion : The mammographic-HHUS combination is compatible with a relatively equal level in determining the presence or absence of the lesion and location of the lesion, but is slightly higher in assessing the morphology of the lesion compared with the mammographic-ABUS combination."
2019
SP-PDF
UI - Tugas Akhir  Universitas Indonesia Library
cover
Jakarta: UI Publishing, 2024
616.994 PED
Buku Teks SO  Universitas Indonesia Library
cover
Andri Sofyana
Depok: Fakultas Teknik Universitas Indonesia, 1999
S34985
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anggrek Citra Nusantara
"Breast cancer can be detected using digital mammograms. In this research study, a system is designed to classify digital mammograms into two classes, namely normal and abnormal, using the k-Nearest Neighbor (kNN) method. Prior to classification, the region of interest (ROI) of a mammogram is cropped, and the feature is extracted using the wavelet transformation method. Energy, mean, and standard deviation from wavelet decomposition coefficients are used as input for the classification. Optimal accuracy is obtained when wavelet decomposition level 3 is used with the feature combination of mean and standard deviation. The highest accuracy, sensitivity, and specificity of this method are 96.8%, 100%, and 95%, respectively."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fara Farisa Dhaifina
"Sistem mamografi terus mengalami perkembangan. Teknologi terbaru yang muncul, seperti detektor pencacah foton tentu menjadi harapan semakin baiknya performa pencitraan yang dihasilkan, baik ditinjau dari segi kualitas citra maupun dosis. Oleh karena itu, dibutuhkan sebuah evaluasi kualitas citra dan dosimetri agar keluaran yang dihasilkan adalah citra dengan kualitas terbaik dan dosis yang masih aman diterima pasien sesuai dengan prinsip As Low As Reasonably Achieveble (ALARA). Penelitian ini dilakukan menggunakan 5 unit pesawat mamografi dengan detektor pencacah foton. Mean glandular dose (MGD) dihitung menggunakan persamaan yang dipublikasikan oleh IAEA Human Series No.17 - Quality Assurance Programme For Digital Mammography, pada ketebalan PMMA 20-70 mm. Kualitas citra dievaluasi secara otomatis menggunakan perangkat lunak Erica2 berbasis CDCOM. European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services (EUREF) digunakan untuk mendapatkan nilai batas yang „dapat diterima‟ dan „dapat dicapai‟ untuk MGD dan nilai ketebalan ambang disk. Hasilnya dibandingkan dengan kinerja pesawat mamografi dengan detektor flat-panel. Nilai MGD pada pesawat dengan detektor pencacah foton menunjukan nilai yang lebih rendah pada ketebalan 40 hingga 70 mm PMMA dibanding detektor flat-panel. Nilai ketebalan ambang disk pada detektor pencacah foton juga menunjukkan angka yang lebih rendah dibanding detektor flat-panel pada seluruh diameter.

The mammography system is constantly evolving. The latest emerging technologies, such as photon counting detector, certainly will be a hope for better imaging performance, both in terms of image quality and dose. Therefore, an evaluation of image quality and dosimetry is needed, so the produced output will be an image with the best quality and dose that is still safe for patients according to the As Low As Reasonably Achievable (ALARA). This research was conducted using 5 units of mammography with photon counting detector. The mean glandular dose (MGD) was calculated using the equation published by the IAEA Human Series No. 17 - Quality Assurance Programme For Digital Mammography, at a PMMA thickness of 20-70 mm. Image quality is evaluated automatically using the CDCOM-based Erica2 software. The European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF) was used to obtain 'acceptable' and 'achievable' values for the MGD and threshold gold thickness values. The result was compared with the performance of a mammography systems with a flat-panel detector. The MGD on a mammography systems with a photon counting detector shows a lower value at a thickness of 40 to 70 mm PMMA compared to a flat- panel detector. The threshold gold thickness values on the photon counting detector also shows a lower number than the flat-panel detector in all diameters."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>