Ditemukan 11 dokumen yang sesuai dengan query
Indriyo Gitasudarma
Yogyakarta : Universitas Gajah Mada , 1998
658.8 IND m
Buku Teks Universitas Indonesia Library
Agus Suryana
Yogyakarta: BPFE , 1981
658.7 AGU e
Buku Teks Universitas Indonesia Library
Bandung ITB 1987 ,
W80 Ind N87m
Buku Teks Universitas Indonesia Library
Davis, Gordon B.
Jakarta: Pustaka Binawan, 1999
658.403 8 DAV k
Buku Teks Universitas Indonesia Library
Lockyer, Keith
Jakarta: Gramedia, 1994
658.5 LOC m
Buku Teks Universitas Indonesia Library
Loedin, Anne Rufaidah
Jakarta Widyaiswara utama muda 1998 ,
W80 Loe N99m
Buku Teks Universitas Indonesia Library
T.M. Rikza Abdy
Abstrak :
Stemming merupakan salah satu bagian penting dalam proses penilaian esai secara otomatis. Stemming merupakan proses transformasi suatu kata-kata tertentu menjadi kata dasarnya. Salah satu algoritma stemming yang ada adalah dengan menggunakan persamaan kata, dimana semua kata yang berimbuhan dan istilah yang berbeda untuk satu kata bermakna sama dapat disetarakan bobotnya. Untuk itu proses stemming menggunakan persamaan kata ini akan diimplementasikan pada sistem penilai esai otomatis Simple-O berbasis Generalized Latent Semantic Analysis (GLSA) yang bertujuan untuk meningkatkan ketepatan penilaiannya agar semakin mendekati hasil penilaian oleh manusia.
Dari 98 kali pengujian, kinerja GLSA menggunakan proses stemming memberikan hasil yang lebih baik dengan tingkat ketepatan sebanyak 72 kali atau sekitar 73,4% lebih unggul dibandingkan GLSA tanpa proses stemming yang hanya unggul sebanyak 20 kali dari 98 kali percobaan atau dengan presentase sekitar 20,4%. Hal ini menunjukkan bahwa implementasi proses stemming pada Simple-O berbasis GLSA menghasilkan hasil yang lebih baik daripada GLSA tanpa proses stemming.
Stemming is one of the important processes on automatic essay grading. Stemming is a process to transform a word into its root word in order to make essay grader becoming more accurate. One of stemming algorithm that have developed is using word similiarity, where in this algorithm all the prefixed word or the other words that have a similar meaning have an equal weight. This algorithm is implemented on an automatic essay graderbased on Generalized Latent Semantic Analysis (GLSA) called Simple-O in order to match the grade from human raters.
The experiment result shows that from 98 samples GLSA algorithm with the stemming process outperform GLSA without stemming 72 times with the percentage about 73,4%, on the other hand GLSA without stemming only give the better result 20 times with the percentage of 20,4%. This experiments result shows that GLSA based Simple-O using stemming algorithm gives better result than GLSA without stemming process.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47509
UI - Skripsi Membership Universitas Indonesia Library
Peck, M. Scott (Morgan Scott), 1936-2005
Abstrak :
Summary:
Confronting and solving problems is a painful process which most of us attempt to avoid. Avoiding resolution results in greater pain and an inability to grow both mentally and spiritually. Drawing heavily on his own professional experience, Dr M. Scott Peck, a psychiatrist, suggests ways in which facing our difficulties - and suffering through the changes - can enable us to reach a higher level of self-understanding. He discusses the nature of loving relationships: how to distinguish dependency from love; how to become one's own person and how to be a more sensitive parent
London: Rider, 2008
158.1 PEC r
Buku Teks Universitas Indonesia Library
Berman, Jules J.
Abstrak :
"Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big D
Amsterdam: Morgan Kaufmann , 2013
005.74 BER p
Buku Teks Universitas Indonesia Library
Hengky Latan
Alfabeta : Bandung , 2014
004.77 LAT a
Buku Teks Universitas Indonesia Library