Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Tasya Justina Simtana
Abstrak :
Molibdenum disulfida merupakan aditif gemuk yang terkenal karena memiliki sifat ketahanan aus yang sangat baik. Ukuran partikel memengaruhi kinerja aditif, dimana semakin kecil ukuran partikel akan memberikan sifat ketahanan aus yang semakin baik. Namun diperlukan biaya yang semakin besar untuk memperoleh partikel berukuran kecil. Oleh karena itu, dibutuhkan penelitian terkait kombinasi ukuran partikel aditif molibdenum disulfida terhadap efektivitas kerja pelumasan gemuk untuk memaksimalkan efisiensi biaya yang diperlukan. Pembuatan gemuk dilakukan melalui reaksi saponifikasi minyak sawit sebagai bahan dasar dengan asam 12-hidroksi stearat, kalsium hidroksida, dan asam asetat sebagai pengental. Hasil bio-gemuk kalsium kompleks NLGI 2 selanjutnya dicampur dengan bubuk aditif molibdenum disulfida 1% b/b. Ukuran partikel aditif divariasikan menjadi 5 μm (Mb), 2 μm (Mk), dan 100 nm (N). Selain itu, dilakukan variasi kombinasi dua ukuran meliputi Mb+Mk, Mb+N, Mk+N, serta kombinasi tiga ukuran dengan komposisi berbeda. Partikel dikarakterisasi ukurannya menggunakan TEM dan PSA. Sedangkan gemuk dikaraktersasi menggunakan uji penetrasi, dropping point, dan four-ball. Hasil penelitian menunjukkan bahwa penambahan aditif molibdenum disulfida dapat mencegah keausan. Selanjutnya, kombinasi tiga ukuran terbukti efektif dalam meningkatkan performa anti-wear, diikuti dengan kombinasi dua dan satu ukuran, dimana hasil paling optimum yaitu dengan komposisi 1:1:1. Namun, penambahan aditif tidak memengaruhi tingkat penetrasi dan dropping point. ......Molybdenum disulfide is a grease additive known for its excellent anti-wear properties. Its performance is affected by particle size, where the smaller the particle will provide better anti-wear performance. In consequence, higher costs are needed. Therefore, research is needed on the particle size combination of molybdenum disulfide particles on tribological performance to achieve cost efficient grease. The grease is made through the saponification reaction of palm oil as base material with 12-hydroxystearic acid, calcium hydroxide, and acetic acid as thickener. The resulting NLGI 2 calcium complex bio-grease was then mixed with 1% w/w molybdenum disulfide powder. The additive particle size was varied into 5 μm (Mb), 2 μm (Mk), and 100 nm (N). Various combinations of two sizes were also carried out, while three sizes were varied by its compositions. Particles were characterized using TEM and PSA, meanwhile bio-grease using penetration, drop point, and four ball tests. The results showed that the addition of molybdenum disulfide could prevent wear. Furthermore, combination of three sizes was proven to be effective in increasing anti-wear performance, followed by combination of two and one size, with optimal results of 1:1:1. However, the addition of additives did not affect the penetration rate and drop point.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Hanifuddin
Abstrak :
[ABSTRAK
Tesis ini membahas pengaruh penambahan aditif pemodifikasi gesekan serbuk MoS2 ukuran 1 5 m dengan jumlah mulai 0 05 0 1 0 5 1 dan 2 berat dan ukuran 90 nm sebesar 0 05 0 1 0 5 pada minyak lumas dasar mineral HVI 60 terhadap karakteristik gesekan dan perlindungan keausannya Aditif ukuran 90 nm dan minyak lumas dasar dicampur dan diaduk menggunakan magnetik stirrer selama enam puluh menit pada suhu 50oC setelah itu dimasukkan ke dalam ultrasonic homogenizer selama satu jam sedangkan aditif ukuran 1 5 m pada suhu 75oC tanpa menggunakan ultrasonic homogenizer Campuran yang dihasilkan diuji karakteristik gesekan dan perlindungan keausannya menggunakan mesin uji four ball dan mesin uji SRV Analisis dilakukan pada material bola uji menggunakan optical emission spectroscopy OES goresan permukaan bola uji menggunakan scanning electron microscope SEM dan minyak lumas sisa pengujian dengan alat uji rotating disk electrode RDE Hasil penelitian menunjukkan bahwa penambahan aditif meningkatkan perlindungan keausan dengan dosis optimal sebesar 0 1 berat dengan rincian ukuran 1 5 m perbaikannya sebesar 23 dan ukuran 90 nm sebesar 11 Pengamatan permukaan goresan menunjukkan mekanisme keausan terjadi secara adesif dan abrasif Data yang diperoleh dari penelitian ini bisa digunakan sebagai dasar dalam pembuatan minyak lumas untuk aplikasi tertentu dengan mutu yang lebih baik
ABSTRACT
This thesis discusses the influence of MoS2 friction modifier FM addition in the form of powder with two different mesh sizes i e 90 nm and 1 5 um on the friction and wear characteristic of HVI 60 base oil The variation of MoS2 were 0 05 0 1 0 5 weight whereas MoS2 1 5 um were 0 05 0 1 0 5 1 and 2 weight MoS2 additive 90 nm was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 50oC and homogenized in ultrasonic homogenizer for 1 hour For the MoS2 1 5 um the additive was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 75oC without using ultrasonic homogenizer Friction and wear characteristic of these mixtures were tested using four ball and SRV test rig Ball specimen surfaces were analyzed by using optical emission spectroscopy OES the wear scars were analyzed by using scanning electron microscope SEM while used mixtures from the test were analyzed by using rotating disk electrode RDE The results of the tests showed that the addition of 0 1 weight MoS2 additive both in 90 nm and 1 5 um resulted in an optimum increase in friction and wear characteristic of 23 and 11 respectively Observation on the wear scar showed that adhesive and abrasive wear mechanism were involved in the wear process The results of this research could be applied in production of lubricating oils for certain applications to improve their quality ;This thesis discusses the influence of MoS2 friction modifier FM addition in the form of powder with two different mesh sizes i e 90 nm and 1 5 um on the friction and wear characteristic of HVI 60 base oil The variation of MoS2 were 0 05 0 1 0 5 weight whereas MoS2 1 5 um were 0 05 0 1 0 5 1 and 2 weight MoS2 additive 90 nm was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 50oC and homogenized in ultrasonic homogenizer for 1 hour For the MoS2 1 5 um the additive was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 75oC without using ultrasonic homogenizer Friction and wear characteristic of these mixtures were tested using four ball and SRV test rig Ball specimen surfaces were analyzed by using optical emission spectroscopy OES the wear scars were analyzed by using scanning electron microscope SEM while used mixtures from the test were analyzed by using rotating disk electrode RDE The results of the tests showed that the addition of 0 1 weight MoS2 additive both in 90 nm and 1 5 um resulted in an optimum increase in friction and wear characteristic of 23 and 11 respectively Observation on the wear scar showed that adhesive and abrasive wear mechanism were involved in the wear process The results of this research could be applied in production of lubricating oils for certain applications to improve their quality ;This thesis discusses the influence of MoS2 friction modifier FM addition in the form of powder with two different mesh sizes i e 90 nm and 1 5 um on the friction and wear characteristic of HVI 60 base oil The variation of MoS2 were 0 05 0 1 0 5 weight whereas MoS2 1 5 um were 0 05 0 1 0 5 1 and 2 weight MoS2 additive 90 nm was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 50oC and homogenized in ultrasonic homogenizer for 1 hour For the MoS2 1 5 um the additive was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 75oC without using ultrasonic homogenizer Friction and wear characteristic of these mixtures were tested using four ball and SRV test rig Ball specimen surfaces were analyzed by using optical emission spectroscopy OES the wear scars were analyzed by using scanning electron microscope SEM while used mixtures from the test were analyzed by using rotating disk electrode RDE The results of the tests showed that the addition of 0 1 weight MoS2 additive both in 90 nm and 1 5 um resulted in an optimum increase in friction and wear characteristic of 23 and 11 respectively Observation on the wear scar showed that adhesive and abrasive wear mechanism were involved in the wear process The results of this research could be applied in production of lubricating oils for certain applications to improve their quality ;This thesis discusses the influence of MoS2 friction modifier FM addition in the form of powder with two different mesh sizes i e 90 nm and 1 5 um on the friction and wear characteristic of HVI 60 base oil The variation of MoS2 were 0 05 0 1 0 5 weight whereas MoS2 1 5 um were 0 05 0 1 0 5 1 and 2 weight MoS2 additive 90 nm was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 50oC and homogenized in ultrasonic homogenizer for 1 hour For the MoS2 1 5 um the additive was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 75oC without using ultrasonic homogenizer Friction and wear characteristic of these mixtures were tested using four ball and SRV test rig Ball specimen surfaces were analyzed by using optical emission spectroscopy OES the wear scars were analyzed by using scanning electron microscope SEM while used mixtures from the test were analyzed by using rotating disk electrode RDE The results of the tests showed that the addition of 0 1 weight MoS2 additive both in 90 nm and 1 5 um resulted in an optimum increase in friction and wear characteristic of 23 and 11 respectively Observation on the wear scar showed that adhesive and abrasive wear mechanism were involved in the wear process The results of this research could be applied in production of lubricating oils for certain applications to improve their quality ;This thesis discusses the influence of MoS2 friction modifier FM addition in the form of powder with two different mesh sizes i e 90 nm and 1 5 um on the friction and wear characteristic of HVI 60 base oil The variation of MoS2 were 0 05 0 1 0 5 weight whereas MoS2 1 5 um were 0 05 0 1 0 5 1 and 2 weight MoS2 additive 90 nm was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 50oC and homogenized in ultrasonic homogenizer for 1 hour For the MoS2 1 5 um the additive was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 75oC without using ultrasonic homogenizer Friction and wear characteristic of these mixtures were tested using four ball and SRV test rig Ball specimen surfaces were analyzed by using optical emission spectroscopy OES the wear scars were analyzed by using scanning electron microscope SEM while used mixtures from the test were analyzed by using rotating disk electrode RDE The results of the tests showed that the addition of 0 1 weight MoS2 additive both in 90 nm and 1 5 um resulted in an optimum increase in friction and wear characteristic of 23 and 11 respectively Observation on the wear scar showed that adhesive and abrasive wear mechanism were involved in the wear process The results of this research could be applied in production of lubricating oils for certain applications to improve their quality , This thesis discusses the influence of MoS2 friction modifier FM addition in the form of powder with two different mesh sizes i e 90 nm and 1 5 um on the friction and wear characteristic of HVI 60 base oil The variation of MoS2 were 0 05 0 1 0 5 weight whereas MoS2 1 5 um were 0 05 0 1 0 5 1 and 2 weight MoS2 additive 90 nm was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 50oC and homogenized in ultrasonic homogenizer for 1 hour For the MoS2 1 5 um the additive was mixed with base oil and stirred with magnetic stirrer for 60 minutes at 75oC without using ultrasonic homogenizer Friction and wear characteristic of these mixtures were tested using four ball and SRV test rig Ball specimen surfaces were analyzed by using optical emission spectroscopy OES the wear scars were analyzed by using scanning electron microscope SEM while used mixtures from the test were analyzed by using rotating disk electrode RDE The results of the tests showed that the addition of 0 1 weight MoS2 additive both in 90 nm and 1 5 um resulted in an optimum increase in friction and wear characteristic of 23 and 11 respectively Observation on the wear scar showed that adhesive and abrasive wear mechanism were involved in the wear process The results of this research could be applied in production of lubricating oils for certain applications to improve their quality ]
2015
T43066
UI - Tesis Membership  Universitas Indonesia Library