Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 47 dokumen yang sesuai dengan query
cover
cover
Hendry Ahmad
"Peningkatan penggunaan gas bumi di masa mendatang memerlukan usaha pengembangan cadangan-cadangan potensial. Salah satunya adalah gas bumi yang berasal dari lapangan gas marginal yang dinilai tidak ekonomis jika dikelola dengan sistim pengelolaan gas dari lapangan yang mempunyai cadangan besar. Hal ini disebabkan lapangan gas marginal mempunyai cadangan dalam jumlah kecil dan pada umumnya berada pada lokasi yang jauh dari sentra-sentra konsumen.
Metode yang dianggap tepat untuk sasaran di atas adalah mencairkan gas bumi menjadi LNG dengan membangun kilang Liquefied Natural Gas (LNG) kapasitas kecil dengan konstruksi peralatan yang dapat dipindah-pindahkan (movable).
Berdasarkan hasil kajian teknis dan ekonomis yang berkaitan dengan teknologi proses kilang LNG skala kecil, serta kelayakan investasi pembangunannya yang dilengkapi dengan sarana pengelolaan, mulai dari lapangan produksi hingga titik distribusi di sentra konsumen gas, maka kilang LNG skala kecil dengan siklus ekspander berpendingin awal propana, menunjukkan prospek yang cukup signifikan untuk mengembangkan lapangan-lapangan gas marginal yang banyak terdapat di wilayah Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2001
T802
UI - Tesis Membership  Universitas Indonesia Library
cover
Holisoh
"Simulasi terhadap ko-produksi yang menggabungkan listrik/kalor, bahan bakar sintetik dan bahan kimia (asam asetat, asetat anhidrid dan asam formiat) dengan bantuan simulator Chemcad V didapat bahwa umpan gas CO2 (802,399 Ton) dan CH4 (375,877 Ton), H2O (186,522 Ton), metanol (461,338 Ton), asam asetat (52,031 Ton), metil asetat (52,031 Ton) menghasilkan beberapa produk, sebagai berikut: DME sebesar 172,813 Ton, bensin sebesar 245,79 Barrel, LPG sebesar 0,062 Ton, asam asetat sebesar 258,225 Ton, asam propionik sebanyak 0,287 Ton, asetat anhidrid sebesar 433,41 Ton, asam formiat sebesar 413,54 Ton, dan metanol sebesar 90,168 Ton. Sedangkan listrik yang dihasilkan dari ko-generasi 870 MW dan kukus 864,47 Ton.
Efisiensi atom C kimiawi koproduksi adalah perbandingan jumlah atom C dalam produk dengan jumlah atom C dalam umpan sebesar 73,91 %. Efisiensi atom C total koproduksi adalah perbandingan jumlah atom C dalam produk terhadap jumlah atom C dalam umpan dan bahan bakar sebesar 68,79 %.
Efisiensi panas kimiawi koproduksi adalah perbandingan jumlah panas dalam produk dengan jumlah panas dalam umpan sebesar 61 % adalah wajar karena komponen umpan terbesar CO2 tidak memiliki nilai LHV, dan juga beberapa produk kimia yang dihasilkan sangat kecil LHV-nya. Sedangkan, efisiensi panas total adalah perbandingan jumlah panas dalam produk dengan jumlah panas dalam produk dan bahan bakar sebesar 26,7%.
Hasil analisa terhadap kasus dasar sebagian besar unit-unit dalam koproduksi layak yaitu; DME, asam asetat, asetat anhidrid, asam formiat, dan kogenerasi. Hanya unit bensin yang kurang menguntungkan.
Dari perhitungan investasi menunjukkan bahwa untuk menghasilkan 1 ton produk memerlukan biaya investasi, untuk DME 787 US$, untuk Bensin 792 US$, untuk Asam Asetat 294 US$, untuk Asam Formiat 1.474 US$ dan Listrik 819 US$."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T2939
UI - Tesis Membership  Universitas Indonesia Library
cover
Silalahi, Mulatua
"Salah satu alternatif pemanfaatan cadangan gas alam Natuna yang memiliki cadangan gas alam dalam jumlah besar yaitu sekitar 4,5 triliun meter kubik adalah dengan memproduksi gas sintesis yang kemudian digunakan untuk mendirikan beberapa pabrik petrokimia, bahan bakar sintetik secara simultan atau ko-produksi.
Berdasarkan analisa awal maka pabrik yang akan dianalisa adalah pabrik synfuel dan pabrik DME. Analisa yang dilakukan didasarkan pada sintesis proses dcngan menggunakan lisensi dari NKK, Haldor Topsoe dan MTG. Analisa teknis yang dilakukan mcliputi kinerja proses yang didasarkan pada efisiensi karbon dan panas. Sedangkan untuk analisa ekonomi meliputi laju dan waktu pengembalian modal, kepekaan terhadap perubahan harga bahan baku dan produk, kapasitas produksi, dan tingkat suku bunga.
Efisiensi karbon kimiawi dan total dari pabrik synfuel adalah sebesar 99.18 % dan 82.61 % sedangkan efisiensi panas kimiawi dan total sebesar 78.39% dan 75.62%. Efisiensi karbon kimiawi dan total untuk proses DME adalah sebesar 99.55 % dan 79.1 % sedangkan efisiensi panas kimiawi dan total sebesar 86.25% dan 67.96%. Sedangkan untuk analisa ekonomi proses synfuel untuk kapasitas produksi 630.000 ton/tahun diperoleh investasi sebesar US$ 3.004.817.898 dengan nilai NRR 50.9 %, IRR 65.3 %, PBP 3.84 tahun dan NPV sebesar US$ 20.083.441.553 hasil ini menunjukkan keuntungan yang sangat baik bila dilihat dari keempat parameter tersebut. Sedangkan untuk proses DME untuk kapasitas produksi 2.200.000 ton/tahun diperoleh investasi sebesar 1.120.816.905 dengan NRR 3.04% IRR 13.62%, PBP 8.52 tahun dan NPV US$ 506.581.188, hasil ini kurang memberikan keuntungan yang cukup terlebih waktu pengembalian lebih besar dari 8 tahun.
Analisa kepekaan kelayakan ekonomi proses synfuel terhadap NRR, IRR, PBP dan NPV lebih banyak dipengaruhi oleh produk Asam Formiat karena kapasitas produksi yang sangat besar dan nilai jual yang sangat tinggi, sedangkan untuk proses DME maka untuk meningkatkan akan keuntungan dari pabrik DME agar memenuhi kelayakan secara ekonomis maka produksi DME harus dinaikkan mulai dari 25 % dari kapasitas dasar.

One of the alternatives for the utilization of Natuna's gas reserve with around 4.5 TCM is by producing synthetic gas that will be used to build several petrochemical plants and synthetic fuels simultaneously (co-production).
Based on pre analysis, plants that will be analyzed is synfuel and DME plants. The analysis is based on synthesis process by using license from NKK, Haldor Topsoe and MTG. Technical analysis that will be applied include process performance based on carbon and heat efficiency. The economical analysis includes rate of investment and payback period, sensitive of raw changing material and product prices, production capacity and interest rate.
The efficiency chemical carbon and total of synfuel plant are 99.18 % and 82.61 % while the efficiency chemical heat and total are 78.39 % and 75.62 %. The efficiency chemical carbon and total for DME plant are 99.55 % and 79.10 %, while the efficiency chemical heat and total are 82.65 % and 67.95 %. For economical analysis of synfuel production capacity is 630.000 ton per anum, investment gained are US$ 3.004.817.898 and value of NRR 50.9 %, IRR 65.3 %, PBP 3.84 years and NPV US$ 20.083.4.41.553. These result shown the best benefit for four parameters mentioned above. DME process for production capacity is 2.200.000 ton per anum investment gained are US$ 1.120.816.905 with NRR 3.04%, IRR 13.62%, PBP 8.52 years, and NPV US$ 506.581.188, these result gives less enough benefit especially for payback period more than 8 years.
Sensitive analysis of synfuel process shown that NRR, IRR, PBP and NPV more influenced by formic acid as by-product because of the high production capacity and the very high product prices. While for DME process to increase the benefit from DME plant to be economically feasible, the DME production must be increased from 25 % from base capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8152
UI - Tesis Membership  Universitas Indonesia Library
cover
Herizal
"Salah satu alternatif pemanfaatan gas alam adalah sebagai bahan baku untuk memproduksi bahan bakar sintetik dengan menggunakan teknologi GTL (Gas To Liquid), dimana prosesnya terdiri dan tiga tahapan, yaitu produksi syngas, sintesis Fischer-Tropsch dan Upgrading product atau peningkatan mutu produk. Teknologi yang digunakan untuk memproduksi syngas ialah teknlogi Autothermal Reforming yang dapat menghasilkan syngas dengan rasio H2/CO sebesar 2 yang merupakan persyaratan umpan syngas untuk sintesis Fischer-Tropsch dengan menggunakan reaktor slung. Sedangkan teknologi yang digunakan untuk upgrading product adalah teknologi minyak bumi yang menggunakan destilasi atmosferis dan reaktor hydrotreating serta hydrocracking. Produk diesel yang dihasilkan mempunyai cetane number 77, kerosene dengan smoke point 29 serta naptha dengan APi 89 dan SG 0, 64. Efisiensi energi untuk unit Upgrading sebesar 82%, karbon 80% serta efisiensi energi untuk kilang GTL Matindok 53% sedangkan efisiensi karbon sebesar 71%. Analisa kelayakan untuk kapasitas 80.000 BPD menghasilkan nilai NPV 541,15 Juta US$, /RR sebesar 15,37% dan PBP selama 7,18 tahun dengan nilai investasi sebesar 2.309 Juta US$. Sedangkan dan analisa sensitivitas terhadap perubahan kapasitas, fluktuasi harga gas dan crude oil memperlihatkan bahwa harga gas merupakan faktor yang dominan dalam mempengaruhi nilai NPV. Dengan jumlah cadangan komulatif sebanyak 6,14 TSCF, maka dapat dibangun delapan train kilang GTL dengan kapasitas 80.000 BPD yang dapat dioperasikan selama 25 tahun.

One of the alternative for the utilization of natural gas is raw material for produced synthetic fuel with use GTL technology, where the process consist of tree step, the first step is synthesis gas production, the second step is synthesis Fischer-Tropsch and the third step is upgrading product. The technology can be used for synthesis gas production is Autothermal Reforming, where the process can produce synthesis gas with H2/CO ratio = 2 that is requirement for the feed to synthesis Fischer-Tropsch which used slurry reactor. The technology can be used for upgrading product is petroleum refinery technology that applied atmospheric distillation, hydrotreating and hydrocracking reactor. Diesel fuel was produced from upgrading unit have cetane number 77, kerosene with smoke point about 29 and naphtha have API and Energy and carbon efficiency for upgrading unit is about 82% and 80%. Energy and carbon efficiency for GTL Matindok refwas 541.15 million US$, 1RR is of 15.37% and PBP is of 7.18 years with total investment 2,309 by million US$. Based on sensitivity analysis for plant capacity, natural gas price and crude oil price showed that natural gas prices is dominant factor for affect NPV value. With the comulatif source of Matindok fields is 6.14 TSCF we can developed eight train GTL refinery with plant capacity 80,000 BPD, and could be operated for 25 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14720
UI - Tesis Membership  Universitas Indonesia Library
cover
Aly Rasyid
"Pemanfaatan gas untuk sektor domestik terutama di Pulau Jawa yang merupakan pusat konsumen gas terbesar di Indonesia akan semakin meningkat, disebabkan oleh pasar LNG dunia yang sangat kompetitif, peningkatan kebutuhan listrik, kenaikan harga bahan bakar minyak, isu lingkungan, dan fakta kebutuhan gas yang semakin besar, Tujuan penelitian ini adalah melakukan optimisasi sistem jaringan transmisi gas bumi terintegrasi yang menghubungkan pusat suplai ke pusat konsumen di Pulau Jawa berupa jaringan PNG (Pipeline Natural Gas), melalui LNG (Liquefaction Natural Gas) maupun CNG (Compressed Natural Gas). Metode optimisasi yang dipakai adalah metode algoritma genetik, dengan tujuan memperoleh total cost supply yang paling minimum, sedangkan untuk proyeksi kebutuhan gas di Pulau Jawa di prediksi dengan menggunakan metode ekonometrik.
Hasil optimisasi jaringan transmisi gas bumi untuk memenuhi kebutuhan gas di Pulau Jawa untuk Skenario I, diperoleh angka total cost of supply yang paling minimum yaitu 38.54 Milyar USS, dengan konfigurasi sistem moda transmisi penyaluran gas ke Jawa: Jawa Barat-PNG, Sulawesi-PNG, Natuna-LNG, dan Papua-LNG. Untuk Skenario II angka total cost of supply yang paling minimum yaitu 55.74 Milyar USS, dengan konfigurasi sistem moda transmisi penyaluran gas ke Jawa sebagai:Jawa Barat-PNG, Sulawesi-PNG, Natuna-LNG, Papua-LNG, dan LNG import. Untuk Skenario III angka total cost of supply yang paling minimum yaitu 31.96 Milyar USS, dengan konfigurasi sistem moda transmisi penyaluran gas ke Jawa sebagai berikut: Jawa Barat-PNG, Sumatera Selatan-PNG."
Depok: Fakultas Teknik Universitas Indonesia, 2006
T16167
UI - Tesis Membership  Universitas Indonesia Library
cover
Sommeng, Andy Noorsaman
"Terbatasnya sumber daya minyak bumi dan gas alam dan meningkatnya kebutuhan minyak bumi dan gas alam dalam negeri sebagai bahan bakar dan bahan baku industri serta masih diperlukannya minyak bumi dan gas alam sebagai devisa negaera maka pemanfaatan dan pengelolaan minyak bumi dan gas alam dilaksanakan seefektif dan seefisian mungkin. Untuk mencapai hal tersebut pemodelan industri minyak bumi dan gas alam sangat diperlukan untuk meramalkan perkembangan industri minyak bumi dan gas alam yang pada saat ini menggunakan sistem kontrak bagi hasil (production sharing contracts).

Limited oil and gas resources increased domestic oil and natural gas demand, such as gasoline and industries feedstock commodities and still oil and natural gas function as part of fund resources for national development, so that effeciently and effectively utilization and exacution oil and natural gas are needed. To get this goal, oil and natural gas industries models is very needed to forecast oil and natural gas industries development and to formulate a policy will be used on oil and natural gas industries. The policy that is used today is Production Sharing Contract (SPC)."
Jurnal Teknologi, 1998
JUTE-XII-1-Mar1998-26
Artikel Jurnal  Universitas Indonesia Library
cover
Edi Iskandar
Depok: Fakultas Teknik Universitas Indonesia, 2008
T 25135
UI - Tesis Open  Universitas Indonesia Library
cover
Dedy Iskandar
"Sesuai dengan kebijakan pemerintah untuk melakukan konversi penggunaan minyak bumi ke gas bumi yang menyebabkan peningkatan permintaan terhadap gas bumi di Indonesia. Salah satu penyediaan dan mentransportasikan gas bumi sebagai sumber energi dilakukan melalui jaringan pipa, baik di darat atau bawah laut yang kemudian akan didistribusikan ke pelanggan. Beberapa metode yang digunakan agar suatu jaringan pipa tetap dapat mengalirkan gas bumi dengan baik dan aman antara lain dengan melakukan inspection (pengawasan), maintenance (pemeliharaan) dan repair (perbaikan jika dibutuhkan) secara teratur. Dengan tidak terintegrasinya metoda-metoda tersebut sehingga potensi kegagalan pada jaringan pipa masih cukup besar, sehingga dilakukan suatu studi terintegrasi pada jaringan pipa gas alam yaitu Pipeline Integrity Management System (PIMS).
Pipeline Integrity Management System meliputi pemodelan atau simulasi yang dilakukan melalui proses assesment yang berkelanjutan dari suatu sistem baik dari segi desain, konstruksi, operasi, pemeliharaan yang sesuai dengan jaringan pipa gas bumi. Tindakan yang dilakukan untuk mengimplementasikan pemodelan ini adalah mencari dan mengintegrasikan informasi yang ada, mengidentifikasi penyebab kegagalan serta melakukan analisa resiko, mengembangkan rencana integrity management, mengimplementasikan program integrity management yaitu inspeksi dan survey, menganalisis hasil untuk memutuskan program yang tepat (perbaikan atau penggantian) terhadap jaringan pipa tersebut, melakukan evaluasi dari tindakan yang diambil, kemudian melaporkan dan melakukan improvement berkelanjutan.
Hasil dari studi yang dilakukan pada jaringan pipa gas alam bawah laut di lapangan jawa barat bagian utara dengan metode Pipeline Integrity Management System (PIMS) menunjukkan bahwa tingkat risiko beberapa jaringan pipa gas alam tersebut kategori high. Jaringan pipa gas alam bawah laut yang mempunyai kategori high akan dilakukan analisa ekonomi. Analisa ekonomi yang akan dilakukan yaitu membandingkan biaya yang dibutuhkan untuk menjaga dan memelihara integritas jaringan pipa dengan memasang atau laydown jaringan pipa. Analisa keekonomian ini dilakukan untuk mengetahui dan merekomendasikan kepada pihak manajemen jika jaringan pipa gas alam bawah laut mengalami kegagalan. Rekomendasi yang dikeluarkan yaitu jaringan pipa akan diperbaiki atau diganti dengan melakukan pemasangan jaringan pipa baru.

According to policy of government regarding conversion oil into the natural gas and increasing demand for natural gas in Indonesia. One of supply and transportation of natural gas as energy source is done by through pipeline, either in onshore or offshore which then will be distributed to customer. Some methods applied that pipeline still can deliver natural gas with properly and safely by doing inspection, maintenance and repair (if it is required) regularly. Nevertheless this method is not so well integrated so the potential failure on the pipeline still quite large. To overcome the lack of the previous methods, we conduct an integrated study for the pipeline known as Pipeline Integrity Management System (PIMS).
Pipeline Integrity Management System (PIMS) includes modeling or simulation conducted through a process of ongoing assessment of a system in design, construction, operation, maintenance, which according to the natural gas pipeline. To implement this modeling is to search and integrates existing information, identifies the root causes of failure and conduct a risk analysis, develops an integrity management plans, inspections and surveys, analyzing the results to decide the appropriate program to the pipelines and evaluating the actions taken, makes a report and continuous improvement.
Result from studies conducted at natural gas pipeline at offshore North West Java field with methods Pipeline Integrity Management System (PIMS) indicates that level of risk some the natural gas pipeline is category high. This result is obtained through risk assessment model of probability and consequences Natural gas pipeline at offshore North West Java having category high will be conduct economics analysis. Economics analysis which will be done that is comparing cost required to maintain pipeline integrity and installing or laydown new pipeline. Economics analysis conduct is to shown and recommends to the top level management if offshore natural gas pipeline failure. The recommendations to the pipeline is will be keep maintain integrity or install of new pipeline."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25135
UI - Tesis Open  Universitas Indonesia Library
cover
Manuhutu, Chassty T.
"ABSTRAK
Untuk negara - negara ASEAN + 3 yang telah lama mengandalkan minyak dan batu bara sebagai sumber energi utama, gas bumi merupakan alternatif sumber energi yang menarik dan konsumsinya akan terus meningkat di masa depan. Gas bumi merupakan salah satu komoditas ekspor penghasil devisa bagi Indonesia yang juga berperan sebagai sumber energi domestik. Akhir-akhir ini Indonesia mengalami kesulitan dalam mempertahankan reputasinya sebagaieksportir gas bumi yang terpercaya akibat ketidakmampuan dalam memenuhi komitmen kontrak di masa lalu dan ketidakjelasan pemerintah mengenai pengalihan pasokan gas ke pasar dalam negeri. Dengan menurunnya minat konsumen terhadap gas Indonesia dan meningkatnya persaingan di tingkat regional, diperlukan strategi baru untuk mempertahankan posisi sebagai eksportir gas bumi. Strategi tersebut dapat digunakan sebagai pertimbangan selama negosiasi perpanjangan kontrak maupun kontrak baru.
Hampir semua negara ? negara ASEAN + 3 sedang menjalani reformasi pasar agar lebih kompetitif. Transisi ke pasar kompetitif dapat meningkatkan volume penjualan dan menurunkan harga di pasar. Hal tersebut dapat memberikan peluang yaitu perluasan pasar ekspor gas bumi Indonesia. Pemodelan pasar gas kompetitif ASEAN + 3 dapat dilakukan untuk mengetahui peluang ekspor gas bumi Indonesia yang saat ini belum terikat kontrak dan harga yang dapat diperoleh. Dengan mengetahui volume gas yang dapat diekspor ke konsumen tertentu, strategi ekspor gas bumi dapat diusulkan.
Berhubung data historis untuk negara ? negara ASEAN + 3 sulit diperoleh, tipe data model adalah parametrik dan deterministik. Tipe model adalah kesetimbangan statis parsial. Sesuai dengan filosofi pasar kompetitif, fungsi objektif model adalah consumer welfare. Perangkat lunak yang akan digunakan dalam pemodelan pasar kompetitif adalah GAMS (General Algebraic Modeling System) dengan solver MINOS. Proyeksi suplai dan permintaan diperoleh dari data sekunder. Penambahan infrastruktur gas baik kilang maupun terminal regasifikasi di Indonesia dan Singapura merupakan dasar dari skenario yang akan digunakan dalam modelisasi. Kerangka waktu yang digunakan adalah 2011 ketika sebagian kontrak gas akan habis masa berlakunya dan perpanjangan kontrak maupun kontrak baru dapat mulai diberlakukan.
Berdasarkan analisa hasil keluaran model, strategi ekspor yang sebaiknya ditempuh adalah memaksimalkan penggunaan jaringan pipa dan kontrak yang ada untuk ekspor gas pipa ke Singapura dan Malaysia; membangun kilang gas Senoro dan train 3 Tangguh dan mengarahkan ekspor ke konsumen ? konsumen tradisional LNG Indonesia seperti Jepang dan Korea Selatan; dan mengalokasikan sebagian produksi gas Kalimantan ke Jawa serta mengalihkan sisanya dalam bentuk LNG ke pasar spot.

ABSTRACT
For ASEAN + 3 countries who have long depended on oil and coal as primary energy sources, natural gas is an attractive alternative energy source and its consumption will continue to increase in the future. Natural gas is one of Indonesia?s export commodity as well as primary energy source. Lately, Indonesia is having difficulties in maintaining its reputation as natural gas exporter due to its inability in meeting contracts a few years ago and unclear commitment on domestic market obligation. Reduced interest of Indonesian gas as well as increased level of competition in the regional market have created the necessity to have a clear strategy in order to maintain its position as one of the leading natural gas exporter. This strategy can be put into consideration while negotiating contract extensions as well as new contracts.
Almost every member of ASEAN + 3 is undergoing market reforms to increase its competitiveness. Transition to competitive market can increase sales volume and lower price. This transition represents an opportunity for Indonesia to increase its market share. A model of the ASEAN + 3 natural gas competitive market can be employed to discover how much volume of Indonesia?s uncommitted natural gas can be exported to a certain country. This knowledge can later be used to propose an export strategy.
Because historical data for certain Asian countries is inaccessible, the model?s data type is parametric and deterministic. The model?s type is partial static equilibrium. Coherent with the principles of competitive market, the objective function of the model is consumer welfare. GAMS (General Algebraic Modeling System) with solver MINOS is used during the modeling of ASEAN + 3 competitive market. Supply and demand projections will be obtained from secondary data. Additional gas infrastructure (LNG plant, regasification terminal and pipeline) in Indonesia and Singapore will be used to define the scenarios used in the model. The selected timeframe is 2011 when several existing contracts will be terminated and any contract extension or new contract will be enforced.
Based on further analysis of the model?s output, the recommended export strategy incorporates maximizing current gas pipeline and contracts for export to Singapore and Malaysia; constructing Senoro LNG plant and Tangguh?s third train then directing the resulted volume for export to Indonesia?s usual customers which are Japan and South Korea; and allocating a portion of Kalimantan?s gas to Java and exporting the rest to international spot market.
"
2007
T22717
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5   >>