Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Rico Tadjudin
"

Grammatical Error Correction (GEC) merupakan bagian dari Natural Language Processing yang membahas suatu task untuk mendeteksi dan setelahnya mengoreksi suatu teks. Pekerjaan tersebut mencakup pendeteksian dan pengoreksian kesalahan tata bahasa, kesalahan ortografi, dan semantik. Perkembangan GEC untuk bahasa Indonesia terkendala oleh sedikitnya dataset yang dapat digunakan untuk melatih model GEC. Penelitian ini mengusulkan pendekatan rule-based untuk membangun sebuah dataset sintetik yang mengandung kalimat salah secara tata bahasa baku bahasa Indonesia beserta koreksinya. Hal tersebut dapat dilakukan dengan memanfaatkan kamus tesaurus bahasa Indonesia dan alat bantuan NLP seperti tokenizer, part-of-speech tagger, morphological analyzer, dan dependency parser untuk mengekstrak informasi konteks dari kalimat. Kumpulan data sintetik dibangkitkan dengan menggunakan kalimat yang benar secara tata bahasa dari halaman0halaman situs Wikipedia sebagai kalimat input. Dataset ini menyediakan data dalam dua format yang berbeda, yaitu dalam format M2 dan dalam bentuk pasangan kalimat salah dan benar. Pembangkitan kesalahan tata bahasa akan memiliki 17 kemungkinan jenis kesalahan tata bahasa yang berbeda dengan total 16.898 kalimat salah yang dibentuk. Pengujian Gramatika dilakukan dengan melakukan evaluasi secara manual mengenai ketepatan pembangkitan tiap kesalahan pada kalimat. Pengujian manual dilakukan dengan melakukan stratified random sampling untuk mengambil sampel 100 kalimat. Sampel tersebut minimal memiliki 5 contoh untuk setiap jenis kesalahan tata bahasa. Dari pengevaluasian yang dilalukan oleh dua penguji, didapatkan nilai accuracy sebesar 91,1%.


Grammatical Error Correction (GEC) is a part of Natural Language Processing which deals with the task of detecting and correcting a text. This includes correcting grammatical errors, semantic errors, and orthographic errors. GEC development in Indonesian language has been hindered by the lack of suitable dataset that can be used to train GEC models. This research proposes a rule-based approach to develop a synthetic dataset that contains sentences in Indonesian with grammar errors and its corresponding corrections. It’s done with the help of dictionaries such as Indonesian thesaurus and NLP tools such as a tokenizer, part of speech tagger, morphological analyzer, and dependency parser to extract contextual information of sentences. The synthetic dataset is generated by using grammatically correct sentences from Wikipedia pages as the input. The resulting dataset is formatted to M2 format and pairs of correct and false sentences, containing 17 types of errors with a total of 16.898 sentences. The evaluation of Gramatika is done by manually assessing the accuracy of the sentence modifications. To do this, stratified random sampling is conducted to select 100 sentences with a minimum of 5 examples for each error type. From the manual evaluation by two evaluators, an average accuracy score of 91.1% is obtained.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Felix Haryono
"Grammatical Error Correction (GEC) merupakan bagian dari Natural Language Processing yang membahas suatu task untuk mendeteksi dan setelahnya mengoreksi suatu teks. Pekerjaan tersebut mencakup pendeteksian dan pengoreksian kesalahan tata bahasa, kesalahan ortografi, dan semantik. Perkembangan GEC untuk bahasa Indonesia terkendala oleh sedikitnya dataset yang dapat digunakan untuk melatih model GEC. Penelitian ini mengusulkan pendekatan rule-based untuk membangun sebuah dataset sintetik yang mengandung kalimat salah secara tata bahasa baku bahasa Indonesia beserta koreksinya. Hal tersebut dapat dilakukan dengan memanfaatkan kamus tesaurus bahasa Indonesia dan alat bantuan NLP seperti tokenizer, part-of-speech tagger, morphological analyzer, dan dependency parser untuk mengekstrak informasi konteks dari kalimat. Kumpulan data sintetik dibangkitkan dengan menggunakan kalimat yang benar secara tata bahasa dari halaman0halaman situs Wikipedia sebagai kalimat input. Dataset ini menyediakan data dalam dua format yang berbeda, yaitu dalam format M2 dan dalam bentuk pasangan kalimat salah dan benar. Pembangkitan kesalahan tata bahasa akan memiliki 17 kemungkinan jenis kesalahan tata bahasa yang berbeda dengan total 16.898 kalimat salah yang dibentuk. Pengujian Gramatika dilakukan dengan melakukan evaluasi secara manual mengenai ketepatan pembangkitan tiap kesalahan pada kalimat. Pengujian manual dilakukan dengan melakukan stratified random sampling untuk mengambil sampel 100 kalimat. Sampel tersebut minimal memiliki 5 contoh untuk setiap jenis kesalahan tata bahasa. Dari pengevaluasian yang dilalukan oleh dua penguji, didapatkan nilai accuracy sebesar 91,1%.

Grammatical Error Correction (GEC) is a part of Natural Language Processing which deals with the task of detecting and correcting a text. This includes correcting grammatical errors, semantic errors, and orthographic errors. GEC development in Indonesian language has been hindered by the lack of suitable dataset that can be used to train GEC models. This research proposes a rule-based approach to develop a synthetic dataset that contains sentences in Indonesian with grammar errors and its corresponding corrections. It’s done with the help of dictionaries such as Indonesian thesaurus and NLP tools such as a tokenizer, part of speech tagger, morphological analyzer, and dependency parser to extract contextual information of sentences. The synthetic dataset is generated by using grammatically correct sentences from Wikipedia pages as the input. The resulting dataset is formatted to M2 format and pairs of correct and false sentences, containing 17 types of errors with a total of 16.898 sentences. The evaluation of Gramatika is done by manually assessing the accuracy of the sentence modifications. To do this, stratified random sampling is conducted to select 100 sentences with a minimum of 5 examples for each error type. From the manual evaluation by two evaluators, an average accuracy score of 91.1% is obtained.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ravi Shulthan Habibi
"Sistem tanya jawab merupakan salah satu tugas dalam domain natural language processing (NLP) yang sederhananya bertugas untuk menjawab pertanyaan sesuai konteks yang pengguna berikan ke sistem tanya jawab tersebut. Sistem tanya jawab berbahasa Indonesia sebenarnya sudah ada, namun masih memiliki performa yang terbilang kurang baik. Penelitian ini bereksperimen untuk mencoba meningkatkan performa dari sistem tanya jawab berbahasa Indonesia dengan memanfaatkan natural language inference (NLI). Eksperimen untuk meningkatkan sistem tanya jawab berbahasa Indonesia, penulis menggunakan dua metode, yaitu: intermediate-task transfer learning dan task recasting sebagai verifikator. Dengan metode intermediate-task transfer learning, performa sistem tanya jawab berbahasa Indonesia meningkat, hingga skor F1-nya naik sekitar 5.69 dibandingkan tanpa menggunakan pemanfaatan NLI sama sekali, dan berhasil mendapatkan skor F1 tertinggi sebesar 85.14, namun, peningkatan performa dengan metode intermediate-task transfer learning cenderung tidak signifikan, kecuali pada beberapa kasus khusus model tertentu. Sedangkan dengan metode task recasting sebagai verifikator dengan parameter tipe filtering dan tipe perubahan format kalimat, performa sistem tanya jawab berbahasa Indonesia cenderung menurun, penurunan performa ini bervariasi signifikansinya. Pada penelitian ini juga dilakukan analisis karakteristik pasangan konteks-pertanyaan-jawaban seperti apa yang bisa dijawab dengan lebih baik oleh sistem tanya jawab dengan memanfaatkan NLI, dan didapatkan kesimpulan bahwa: performa sistem tanya jawab meningkat dibandingkan hasil baseline-nya pada berbagai karakteristik, antara lain: pada tipe pertanyaan apa, dimana, kapan, siapa, bagaimana, dan lainnya; kemudian pada panjang konteks ≤ 100 dan 101 ≤ 150; lalu pada panjang pertanyaan ≤ 5 dan 6 ≤ 10; kemudian pada panjang jawaban golden truth ≤ 5 dan 6 ≤ 10; lalu pada keseluruhan answer type selain law dan time; terakhir pada reasoning type WM, SSR, dan MSR.

The question-answering system is one of the tasks within the domain of natural language processing (NLP) that, in simple terms, aims to answer questions based on the context provided by the user to the question-answering system. While there is an existing Indonesian question-answering system, its performance is considered somewhat inadequate. This research conducts experiments to improve the performance of the Indonesian question answering system by utilizing natural language inference (NLI). In order to enhance the Indonesian question-answering system, the author employs two methods: intermediate task transfer learning and task recasting as verifiers. Using the intermediate-task transfer learning method, the performance of the Indonesian question-answering system improves significantly, with an increase of approximately 5.69 in F1 score compared to not utilizing NLI at all, achieving the highest F1 score of 85.14. However, the performance improvement with the intermediate-task transfer learning method tends to be non-significant, except in certain specific cases and particular models. On the other hand, employing the task recasting method as a verifier with filtering parameter type and sentence format change type leads to a decline in the performance of the Indonesian question-answering system, with the significance of this performance decrease varying. Additionally, this research conducts an analysis on the characteristics of context-question-answer pairs that can be better answered by the question-answering system utilizing NLI. The findings conclude that the question-answering system’s performance improves compared to its baseline across various characteristics, including different question types such as what, where, when, who, how, and others. Furthermore, it improves with context lengths ≤ 100 and 101 ≤ 150, question lengths ≤ 5 and 6 ≤ 10, as well as answer lengths (golden truth) ≤ 5 and 6 ≤ 10. Additionally, it performs better in overall answer types excluding law and time, and lastly, in reasoning types WM, SSR, and MSR.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Inigo Ramli
"Model bahasa dapat mempelajari struktur suatu bahasa manusia menggunakan korpus yang tidak terstruktur. Namun, model bahasa secara umum belum dapat mempelajari pengetahuan faktual yang direpresentasikan oleh knowledge graph. Terdapat beberapa usaha untuk membuat model bahasa yang dapat mempelajari pengetahuan faktual seperti KEPLER. Sayangnya, belum terdapat penelitian yang komprehensif mengenai integrasi pengetahuan faktual terhadap pelatihan model bahasa Indonesia. Penelitian ini mengajukan model bahasa Indonesia baru bernama IndoKEPLER yang melatih model bahasa Indonesia yang sudah ada dengan korpus Wikipedia Bahasa Indonesia dan memanfaatkan pengetahuan faktual dari Wikidata. Selain itu, penelitian ini juga mengajukan metode knowledge probing baru untuk menguji pemahaman faktual suatu model bahasa Indonesia. Hasil eksperimen penelitian ini menunjukkan bahwa pelatihan model IndoKEPLER dapat meningkatkan pemahaman faktual suatu model bahasa Indonesia.

Pretrained language models have the ability to learn the structural representation of a natural language by processing unstructured textual data. However, the current language model design lacks the ability to learn factual knowledge from knowledge graphs. Several attempts have been made to address this issue, such as the development of KEPLER. Unfortunately, such knowledge enhanced language model is not yet available for the Indonesian language. In this experiment, we propose IndoKEPLER: a pretrained language model trained using Wikipedia Bahasa Indonesia and Wikidata. We also create a new knowledge probing benchmark named IndoLAMA to test the ability of a language model to recall factual knowledge. This experiment shows that IndoKEPLER has a higher ability to recall factual knowledge compared to the text encoder it’s based on."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library