Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Muhammad Naufal Hisyam
Abstrak :
Turbiditas adalah salah satu ukuran yang sering digunakan untuk menilai kualitas air. Pengukuran turbiditas dapat dijadikan estimasi untuk mengetahui parameter fisis lain seperti zat padat tersuspensi total (TSS) atau parameter biologis seperti konsentrasi mikroorganisme. Beberapa penelitian telah mencoba menerapkan metode computer vision untuk memprediksi nilai turbiditas dari citra sebuah sampel air. Kebanyakan penelitian yang dilakukan masih menggunakan ekstraksi fitur secara manual sehingga diperlukan pengetahuan yang mencukupi terkait pengolahan citra dan pengukuran turbiditas. Pada penelitian ini dibuat sistem instrumentasi prediksi nilai turbiditas air berbasis pengolahan citra ponsel dengan ekstraksi fitur dan regresi oleh model deep convolutional neural network (DCNN). Penggunaan DCNN memungkinkan dilakukannya untuk melakukan ekstraksi fitur secara otomatis. Arsitektur DCNN yang digunakan yaitu ResNet-50 dan DenseNet-121. Efektivitas penerapan transfer learning berupa weight initialization pada DCNN juga ditinjau dalam kasus ini. Sampel yang digunakan pada penelitian ini berupa suspensi formazin dengan berbagai nilai turbiditas untuk pelatihan model dan beberapa sampel air untuk validasi model. Sampel disinari oleh LED di dalam kotak akuisisi yang dibuat untuk menampakkan fitur. Citra dari sampel diakuisisi menggunakan ponsel Samsung S20 FE dari dua sudut berbeda yaitu 0° (turbidimetry) dan 90° (nephelometry) terhadap sampel. Hasil terbaik pada penelitian ini diperoleh oleh Model ResNet-50 dengan transfer learning yang memperoleh MAE sebesar 2.44 untuk sampel formazin dan 7.31 untuk sampel air dengan citra turbidimetry. Hasil penelitian menunjukkan potensi menjanjikan penggunaan DCNN pada kasus regresi nilai turbiditas air untuk dikembangkan lebih lanjut. ......Turbidity is a measure that is often used to assess water quality. Turbidity measurements can be used as estimates to determine other physical parameters such as total suspended solids (TSS) or biological parameters such as the concentration of microorganisms. Several studies have tried to apply computer vision methods to predict the turbidity value from images of water samples. Most of the research conducted still uses manual feature extraction, hence sufficient knowledge regarding image processing and turbidity measurements is needed. In this study, an instrumentation system for predicting water turbidity values based on mobile phone images is made. The feature extraction and regression process are done using a deep convolutional neural network (DCNN) model. The use of DCNN allows it to perform feature extraction automatically. The DCNN architecture used is ResNet-50 and DenseNet-121. The effectiveness of implementing transfer learning in the form of weight initialization on DCNN is also reviewed in this study. The samples used in this study were formazine suspensions with various turbidity values for model training and several water samples for model validation. The sample is illuminated by an LED inside an acquisition box to reveal its features. The images of the samples were acquired using a Samsung S20 FE mobile phone from two different angles, namely 0° (turbidimetry) and 90° (nephelometry) to the sample. The best results in this study were obtained by the ResNet-50 model with transfer learning applied which obtained MAE values of 2.44 for formazine samples and 7.31 for water samples using turbidimetry images. The results show the promising potential for further development of DCNN usage in the case of water turbidity values regression.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwiky Nugraha
Abstrak :
Bertumbuhnya perkembangan transportasi udara, ekonomi dan fasilitas di daerah mengakibatkan kenaikan pada pemakaian avtur di Indonesia. Peningkatan permintaan avtur ini harus disesuaikan dengan perkembangan fasilitas dan pasokan avtur pada bandara di daerah seperti bandara Raja Hasi Fisabilillah di Tanjungpinang. Tetapi penyedia avtur belum mempunyai data awal untuk membuat kebijakan dan perencanaan. Untuk itu, dibutuhkanlah data awal berupa peramalan permintaan avtur. Terdapat banyak metode untuk melakukan peramalan, namum belum diketahui metode yang mampu memberikan hasil terbaik. Untuk itu dilakukan peramalan yang menggunakan metode peramalan ARIMA dan ANN pada penelitian ini. Metode ARIMA baik dalam mengestimasi data time series yang bersifat linear, serta metode ANN baik dalam mendeteksi pola non linear. Serta digunakan metode hybrid yang menggabungkan metode ARIMA dengan ANN yang diharapkan memberikan hasil yang baik. Dari penelitian yang dilakukan, hasil peramalan dibandingkan dengan metode tradisional dan SARIMA, dan didapatkan bahwa metode hybrid memberikan hasil yang terbaik dibandingkan dengan error MAPE sebesar 13.75 . Dengan jumlah permintaan pada periode selanjutnya sebesar 101.94 kl, 104.48 kl, 105.46 kl, 114.04 kl, 106.05 kl, 114.03 kl, 114.63 kl, 116.15 kl, 101.44 kl, 97.86 kl.
The growing of air transport, the economy and the facilities in the local area resulted in an increase in aviation fuel consumption in Indonesia. The increase of jet fuel demand is must be accompanied by the development of facilities and the supply of aviation fuel at airports in local areas such as Raja Haji Fisabilillah airports in Tanjungpinang. But aviation fuel providers not already have preliminary data for planning and policy making. Thus, required the initial data like forecasting demand for aviation fuel. There are many methods for forecasting, yet we don rsquo t know which method are capable of providing the best results. For that reason, we try to using ARIMA and ANN forecasting method. ARIMA is one of the method which is good in estimating the linear data of time series, and ANN methods is good at detecting non linear pattern. And we used a hybrid method that combines ARIMA with ANN which expected to provide good results. This research shown the results of forecasting compared to traditional and SARIMA method, and found that the hybrid method gives the best result, with MAPE error is 13.75 . And the total demand in the next period is 101.94 kl, 104.48 kl, 105.46 kl, 114.04 kl, 106.05 kl, 114.03 kl, 114.63 kl, 116.15 kl, 101.44 kl, and 97.86 kl.
Depok: Universitas Indonesia, 2016
S66594
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifia Fithritama
Abstrak :
Dalam beberapa tahun ini, telah banyak penelitian yang berhubungan dengan pengenalan pola dilakukan dengan menggunakan jaringan syaraf tiruan (artificial neural network). Skripsi ini membahas tentang sistem pengenal pola berbasis neural network ensemble (NNE), yang merupakan kumpulan dari beberapa neural network tunggal. Penelitian ini membandingkan antara NNE yang dilatih dengan fungsi eror kuadratis dan cross-entropy. Terdapat 12 dataset pola yang digunakan pada penelitian ini yaitu 9 dataset pola yang didapatkan dari ?UCI Repository of Machine Learning Database?, 2 dataset citra wajah dari kamera infra merah dan kamera cahaya tampak, dan 1 dataset campuran aroma. Prosedur kerja system terdiri dari tahap pra-pemrosesan, pelatihan, dan pengujian. Pada tahap pelatihan, diterapkan algoritma Negative Correlated Learning (NCL) yang merupakan pengembangan dari algoritma standar backpropagation. Hasil pengujian yang ditinjau dari recognition rate menunjukkan NNE yang dilatih dengan fungsi eror cross-entropy memberikan performa yang lebih baik dibandingkan dengan NNE yang dilatih dengan fungsi eror kuadratis.
In recent years, many people have been working on pattern recognition using artificial neural network. This bachelor thesis discuss about pattern recognition system based on neural network ensemble (NNE), which is a group of some individual neural networks. This research compares between NNE which is trained using mean-of-square and cross-entropy error function. There are 12 datasets used in this experiment, which are 9 pattern datasets obtained from ?UCI Repository of Machine Learning Database? and 2 dataset of frontal face images from infra red and visible-light camera, and 1 dataset of odor mixtures. The working procedures of the system consist of pre-processing, training and testing stages. In the training stage, Negative Correlated Learning (NCL) algorithm, a developed standard back propagation method, is applied and some parameters are varied to obtain the optimum performance. The testing result which is measured from recognition rate shows that NNE which is trained using cross-entropy error function has a better performance than the one with mean-of-square error function.
2011
S170
UI - Skripsi Open  Universitas Indonesia Library