Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Juliadanto S
"ABSTRAK
Tugas akhir ini membicarakan ketertutupan bahasa formal
terhadap beberapa operasi aljabar. Dari sifat ketertutupan
bahasa tersebut, maka kelas bahasa dapat digolongkan ke dalam
beberapa famili bahasa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1987
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Utami
"ABSTRAK

Misalkan $G$ adalah graf sederhana. Jarak antara dua simpul $u$ dan $v$ di $G$ adalah panjang lintasan terpendek yang menghubungkan kedua simpul tersebut. Himpunan simpul pada graf $G$ yang berjarak kurang dari atau sama dengan $d$ dari simpul $v$ dinotasikan dengan $N_d(v)$. Pelabelan simpul tak teratur jarak-$d$ inklusif pada graf $G$ merupakan pelabelan simpul dengan bobot-bobot simpul yang berbeda. Bobot suatu simpul $v$ pada pelabelan tersebut diperoleh dari jumlah semua label simpul pada $N_d(v)$ dan label simpul $v$ itu sendiri. Nilai terkecil dari label terbesar yang digunakan pada semua pelabelan yang mungkin untuk graf $G$ disebut bilangan ketakteraturan simpul jarak-$d$ inklusif dari $G$ dan dinotasikan dengan $\dis_d^0(G)$. Nilai $\dis_1^0(G)$ dari beberapa kelas graf telah diselidiki pada beberapa penelitian lain. Pada penelitian ini, penyelidikan dilakukan terhadap nilai $\dis_d^0(G)$ untuk beberapa kelas graf dengan $d\in \mathbb{Z}^+$. Berdasarkan penyelidikan tersebut, diperoleh nilai eksak dari $\dis_d^0(G)$ untuk graf tangga segitiga $\mathbb{L}_n$ dengan $d=1$ untuk beberapa nilai $n \pmod 5$ dan dengan $d=2$ untuk beberapa nilai $n \pmod 9$. Secara umum diperoleh nilai $\dis_d^0(\mathbb{L}_n)$ dengan $d\in \mathbb{Z}^+$ untuk $n\equiv 2d+1 \pmod{4d+1}$. Hasil lain yang diperoleh adalah nilai $\dis_d^0(G)$ untuk graf lintasan $P_n$, dengan $d$ dan $n$ adalah bilangan genap, yang disimpulkan berdasarkan hasil observasi hubungan antara graf lintasan dan graf tangga segitiga. Penyelidikan lebih jauh terhadap graf lintasan menghasilkan kesimpulan terkait nilai $\dis_d^0(P_n)$ dengan $d=2$ dan 4 untuk beberapa bilangan ganjil $n$ serta $d=3$ untuk beberapa nilai $n \pmod 7$. Selanjutnya, memanfaatkan hasil pada graf lintasan, disimpulkan nilai $\dis_d^0(G)$ untuk graf kipas $f_n$. Terakhir, penyelidikan dilakukan terhadap hasil korona antara graf komplit $K_m$ dan komplemen graf komplit $\overline{K_n}$. Hasil yang diperoleh adalah nilai $\dis_d^0(K_m \circ \overline{K_n})$ dengan $d=1$.


ABSTRACT


Let $G$ be a simple graph. The distance between two vertices $u$ and $v$ in $G$ is the length of the shortest path between those vertices. The set of vertices in graph $G$ which have distance up to $d$ from vertex $v$ is denoted by $N_d(v)$. An inclusive $d$-distance vertex irregularity labeling of a graph $G$ is a vertex labeling where the weights of vertices are distinct. The weight of vertex $v$ in this labeling is the sum of all labels of vertices in $N_d(v)$ and the label of $v$ itself. The minimum value of the largest label used in such labeling is called inclusive $d$-distance vertex irregularity strength of $G$ and denoted by $\dis_d^0(G)$. The value of $\dis_1^0(G)$ of some graph classes are already investigated in some other researches. In this research, investigations are carried out on the value of $\dis_d^0(G)$ for some classes of graph with $d \in \mathbb{Z}^+$. Based on the investigations, the exact value of $\dis_d^0(G)$ for triangular ladder graph $\mathbb{L}_n$ for some value of $n \pmod 5$ with $d=1$ and for some value of $n \pmod 9$ with $d=2$ are obtained. In general, the value of $\dis_d^0(G)$ with $d\in \mathbb{Z}^+$ is obtained for $n\equiv 2d+1 \pmod{4d+1}$. Another result obtained is the value of $\dis_d^0(G)$ for path $P_n$, with $d$ and $n$ even numbers, that is concluded based on the observation result between path and triangular ladder graph. Further investigation on path concludes the value of $\dis_d^0(Pn)$ with $d=2$ and 4 for some odd numbers $n$ and $d=3$ for some value of $n\pmod 7$. Furthermore, using the result on path, the value of $\dis_d^0(G)$ for the fan graph $f_n$ is concluded. Finally, an investigation is carried out on the result of corona operation between complete graph $K_m$ and its complement graph $\overline{K_n}$. The result obtained is the value of $\dis_d^0(K_m \circ \overline{K_n})$ with $d=1$.

"
2019
T52584
UI - Tesis Membership  Universitas Indonesia Library
cover
Fawwaz Fakhrurrozi Hadiputra
"Misalkan G(V,E) adalah graf sederhana, u dan v adalah simpul-simpul dari graf G. Suatu pemetaan bijektif f:V(G)∪E(G)→{1,2,3,…,|V(G)|+|E(G)|} disebut sebagai pelabelan total super antiajaib lokal jika untuk setiap dua simpul bertetangga u,v pada V(G),w(u)≠w(v) dengan w(x)=f(x)+∑_(e∈E(G)) f(x) untuk setiap busur e yang hadir pada simpul x, dan f(V(G))={1,2,3,…,|V(G)|}. Nilai minimum banyak jenis bobot berbeda pada pelabelan total super simpul antiajaib lokal pada graf G dinotasikan χ_slat (G). Pada penelitian ini, dipelajari karakterisasi graf pohon yang memiliki nilai χ_slat (G)=2, eksistensi graf pohon yang memiliki nilai χ_slat (G)=3, serta konstruksi graf pohon yang memiliki nilai χ_slat (G)=n untuk suatu bilangan bulat n.......Let G(V,E) be a simple graph and u,v be vertices of graph G. A bijective map f:V(G)∪E(G)→{1,2,3,…,|V(G)|+|E(G)|} is called super vertex local antimagic total labeling if for every two adjacent vertices u,v in V(G), w(u)≠w(v) with w(x)=f(x)+∑_(e∈E(G)) f(e) for every edge e incident to vertex v. The super vertex local antimagic total chromatic number χ_slat (G) is the minimum number of colors taken over all colorings induced by super vertex local antimagic total labeling of G. The research shows the characterization tree graph T which have χ_slat (T)=2, the existence of the tree graphs T which have χ_slat (T)=3, and the construction of tree graph T which have χ_slat (T)=n for integer n."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book is dedicated to the memory of Israel Gohberg (1928–2009) – one of the great mathematicians of our time. The volume reflects the wide spectrum of Gohberg’s mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory."
New York: Basel, 2012
e20418901
eBooks  Universitas Indonesia Library