Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Salma Salsabila
"Magnesium dikenal sebagai logam struktural ringan yang ideal untuk aplikasi biomaterial karena sifatnya yang biokompatibel dan biodegradabel. Namun, tantangan utamanya adalah kecenderungan korosi yang cepat dalam kondisi fisiologis. Metode PEO telah banyak digunakan untuk meningkatkan ketahanan korosi, dengan teknik yang memungkinkan pembentukan lapisan oksida yang padat dan tahan lama. Penelitian ini bertujuan untuk menganalisis pengaruh penambahan hidroksiapatit (HA) 1 g/L dan 10 g/L dan penggunaan arus berselang dalam proses Plasma Electrolytic Oxidation (PEO) terhadap sifat elektrokimia, bioaktivitas, dan karakteristik lapisan pada paduan magnesium AZ31. Arus berselang artinya penghentian arus selama 1 menit setelah arus diaplikasikan selama 4 menit, yang diulangi hingga tiga kali. Pengujian korosi dilakukan menggunakan metode Electrochemical Impedance Spectroscopy (EIS) dan Potentiodynamic Polarization (PDP), serta pengujian bioaktivitas menggunakan larutan Simulated Body Fluid (SBF). Penambahan hidroksiapatit (HA) dan penerapan arus berselang dalam proses PEO telah dilakukan pada paduan AZ31 untuk meningkatkan ketahanan korosi dan bioaktivitas. Pada konsentrasi HA 10 g/L, diperoleh nilai RpEIS sebesar 1,89 × 10⁵ Ω·cm² dan RpPDP sebesar 6,15 × 10⁸ Ω·cm². Senyawa kalsium-fosfat (Ca-P) terbentuk dengan rasio Ca/P antara 0,17–0,23. Setelah 14 hari perendaman dalam SBF, seluruh sampel menunjukkan degradasi. Hasil ini menunjukkan bahwa kombinasi metode tersebut dapat meningkatkan performa permukaan, meskipun diperlukan evaluasi lebih lanjut terhadap ketahanan jangka panjang.

This study investigates the impact of hydroxyapatite (HA) addition and anodic pauses during the Plasma Electrolytic Oxidation (PEO) process on the corrosion resistance and bioactivity of AZ31 magnesium alloy. The alloy, known for its biodegradability and biocompatibility, suffers from rapid corrosion in physiological environments. To address this, the PEO process was modified by adding HA at concentrations of 0, 1, and 10 g/L, and introducing intermittent pauses in current application to the PEO electrolyte solution and implemented a 1-minute pause after 4 minutes of current application. Testing was conducted using Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization (PDP) methods to evaluate electrochemical properties, while bioactivity testing was carried out using Simulated Body Fluid (SBF) solution to assess corrosion resistance. The addition of hydroxyapatite (HA) and the application of anodic pauses in the PEO process have been proven to enhance the corrosion resistance and bioactivity of the oxide layer on AZ31 alloy. Hydroxyapatite (HA) addition and pulsed current PEO were applied to AZ31 alloy to improve corrosion resistance and bioactivity. At 10 g/L HA, RpEIS and RpPDP reached 1,89 × 10⁵ Ω·cm² and 6.15 × 10⁸ Ω·cm², respectively. Ca-P formed with a Ca/P ratio of 0.17–0.23. All samples showed degradation after 14 days in SBF. The method enhanced surface properties but requires further long-term assessment."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Adi Pamungkas
"Komposit magnesium Mg-1Zn-2,9Y memiliki potensi sebagai material implan sementara karena sifatnya yang ringan, biodegradable, dan biokompatibel. Namun, laju korosi yang tinggi masih menjadi tantangan utama. Penelitian ini bertujuan untuk meningkatkan kualitas permukaan komposit Mg-1Zn-2,9Y melalui penambahan penguat ZrO₂ (0; 0,6; 0,8; dan 1 wt%) yang dikombinasikan dengan proses Plasma Electrolytic Oxidation (PEO). Proses dilakukan pada arus 400 A/m² dengan variasi durasi 2 dan 5 menit. Hasil menunjukkan bahwa penambahan ZrO₂ memengaruhi dinamika discharge dan struktur lapisan. Variasi 0,6 wt% menghasilkan lapisan paling padat dan halus (porositas 2,52%; diameter pori 0,31 ± 1,15 μm), serta kekerasan tertinggi pada 1 wt% (98,4 ± 6,88 HV) dimana proses PEO menambahkan kekerasan substrat. Namun, aglomerasi partikel pada konsentrasi lebih tinggi menyebabkan ketidakhomogenan lapisan. Uji XRD menunjukkan transisi struktur dari amorf menuju kristalin dengan munculnya fasa Mg₃(PO₄)₂ pada 0,8 wt% dan fasa MgO pada semua sampel. Uji elektrokimia menunjukkan bahwa sampel tanpa ZrO₂ memiliki performa pelindung terbaik secara elektrokimia dengan resistansi polarisasi tertinggi (RpEIS hingga rentang pengulangan sampel (607,7 hingga 942,1 Ω·cm²). Penambahan ZrO₂ dari 0,6 hingga 1 wt% justru menurunkan performa elektrokimia secara umum rentang pengulangan sampel dengan nilai RpEIS yang lebih rendah dan ketebalan lapisan yang lebih tipis dan tidak stabil (114,3 hingga 355,30 Ω·cm²). Berdasarkan hasil ini, komposisi 0,6 wt% ZrO₂ dinilai paling optimal secara morfologi dan kekerasan, namun belum sepenuhnya unggul dalam aspek ketahanan korosi elektrokimia.

The magnesium-based composite Mg-1Zn-2.9Y holds great potential as a temporary implant material due to its lightweight nature, biodegradability, and biocompatibility. However, its high corrosion rate remains a major challenge. This study aims to enhance the surface quality of Mg-1Zn-2.9Y composites by incorporating ZrO₂ reinforcement (0; 0.6; 0.8; and 1 wt%) in combination with the Plasma Electrolytic Oxidation (PEO) process. The PEO treatment was conducted at a current density of 400 A/m² with treatment durations of 2 and 5 minutes. The results indicate that the addition of ZrO₂ influences discharge dynamics and coating structure. The 0.6 wt% variation produced the densest and smoothest coating (porosity of 2.52%; pore diameter of 0.31 ± 1.15 μm), while the highest hardness was achieved at 1 wt% (98.4 ± 6.88 HV), suggesting that the PEO process effectively enhanced the substrate’s hardness. However, higher concentrations led to particle agglomeration and non-uniform coatings. XRD analysis revealed a structural transition from amorphous to crystalline, with the appearance of Mg₃(PO₄)₂ phases at 0.8 wt% and MgO phases in all samples. Electrochemical testing showed that the sample without ZrO₂ exhibited the best protective performance, with the highest polarization resistance (RpEIS ranging from 607.7 to 942.1 Ω·cm² across repetitions). In contrast, the addition of ZrO₂ (0.6 to 1 wt%) generally reduced electrochemical performance, with lower RpEIS values and thinner, less stable coatings (114.3 to 355.30 Ω·cm²). Based on these findings, the 0.6 wt% ZrO₂ composition was considered the most optimal in terms of morphology and hardness, though it did not outperform in electrochemical corrosion resistance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library