Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Huber, Peter J.
New York: John Wiley & Sons, 1981
519.5 HUB r
Buku Teks SO  Universitas Indonesia Library
cover
Melati Ayuwangi
"Runtun waktu merupakan barisan data yang diukur pada interval waktu yang periodik. Pada pengambilan data runtun waktu seringkali ditemukan adanya outlier, yang dapat mempengaruhi taksiran parameter autoregressive dan peramalan data. Pada skripsi ini diperkenalkan teknik baru untuk mendeteksi outlier pada model autoregressive dan mengidentifikasi jenis outlier sebagai additive atau innovation. Teknik ini diperkenalkan oleh Allan McQuarrie dan Chih L. Tsay, dan dapat digunakan tanpa diketahuinya model order sebenarnya, waktu terjadinya outlier, dan jenis outlier. Pertama, akan dicari taksiran besaran outlier yang meminimumkan residual sum of square (SSE). Kemudian dari taksiran tersebut akan didapatkan pengurangan terhadap SSE yang nantinya akan digunakan untuk mendapatkan besaran pendeteksian outlier dan juga digunakan untuk mengidentifikasi jenis outlier. Akan dicari pula penaksir yang robust untuk standar deviasi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Huber, Peter J.
"Here is a brief, well-organized, and easy-to-follow introduction and overview of robust statistics. Huber focuses primarily on the important and clearly understood case of distribution robustness, where the shape of the true underlying distribution deviates slightly from the assumed model (usually the Gaussian law). An additional chapter on recent developments in robustness has been added and the reference list has been expanded and updated from the 1977 edition."
Philadelphia: Society for Industrial and Applied Mathematics, 1996
e20448590
eBooks  Universitas Indonesia Library
cover
New York: Springer-Verlag, 1991
519.5 DIR
Buku Teks SO  Universitas Indonesia Library
cover
Ngantung Erland Jeremia
"Analisis regresi adalah salah satu metode yang digunakan dalam menganalisisdata. Metode yang sering digunakan untuk menaksir parameter dalam modelregresi linier adalah ordinary least square OLS. Metode OLS akan memberikantaksiran terbaik ketika semua asumsinya terpenuhi. Namun pada kenyataannya,asumsi tersebut seringkali tidak terpenuhi. Asumsi yang seringkali tidak terpenuhiadalah adanya multikolinieritas dan adanya pencilan outlier. Multikolinieritasakan membuat variansi taksiran parameter regresi menjadi sangat besar, sedangkanoutlier akan membuat taksiran parameter menjadi bias. Jika kedua pelanggaranasumsi ini terjadi pada data yang akan dianalisis digunakan robust jackknife ridgeregression. Robust jackknife ridge regression adalah regresi yang punya sifatrobust sehingga tidak terpengaruh oleh outlier dan menggunakan metode ridgeuntuk mengatasi masalah multikolinieritas serta menggunakan metode jackknifeuntuk mereduksi bias yang dihasilkan metode ridge. Metode yang digunakanuntuk mencapai sifat robust adalah MM-estimation sehingga taksiran yangdihasilkan punya breakdown point serta efficiency yang tinggi.

Regression Analysis is one of many methods used for analyzing data. Method thatusually used for estimating parameter in linear regression model is ordinary leastsquare OLS . OLS will give best estimator when all the assumptions are met. Butin reality, sometimes not all the assumptions are met. Assumptions that usuallyviolated are multicollinearity and outlier. Multicollinearity will make variance ofthe estimated parameter become large, while outlier will make the estimatedparameter become biased. If this two violation of assumptions happened, robustjackknife ridge regression is used. Robust jackknife ridge regression is regressionthat have robust property so that it will not affected by outlier and using ridgemethod to handle multicollinearity with jackknife method to reduce biased fromridge method. Method used to achieve robust property is MM estimation so thatthe estimated parameter have high breakdown point and high efficiency.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68662
UI - Skripsi Membership  Universitas Indonesia Library
cover
Neumayer, Eric
"The uncertainty that researchers face in specifying their estimation model threatens the validity of their inferences. In regression analyses of observational data, the 'true model' remains unknown, and researchers face a choice between plausible alternative specifications. Robustness testing allows researchers to explore the stability of their main estimates to plausible variations in model specifications. This highly accessible book presents the logic of robustness testing, provides an operational definition of robustness that can be applied in all quantitative research, and introduces readers to diverse types of robustness tests. Focusing on each dimension of model uncertainty in separate chapters, the authors provide a systematic overview of existing tests and develop many new ones. Whether it be uncertainty about the population or sample, measurement, the set of explanatory variables and their functional form, causal or temporal heterogeneity, or effect dynamics or spatial dependence, this book provides guidance and offers tests that researchers from across the social sciences can employ in their own research."
United Kingdom: Cambridge University Press, 2017
e20528717
eBooks  Universitas Indonesia Library