Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Wilson Koven
"Efek hujan dan gempa mempengaruhi stabilitas lereng. Hujan dapat mengakibatkan terjadinya infiltrasi pada lereng yang menyebabkan turunnya tekanan air pori negatif pada lereng dan meningkatkan muka air tanah. Sedangkan gempa akan memberikan beban seismik yang menyebabkan terjadinya deformasi pada lereng. Lereng akan mengalami kondisi yang lebih kritis lagi apabila efek hujan dan gempa dikombinasikan. Penelitian ini bertujuan untuk mengetahui pengaruh hujan yang disusul gempa pada stabilitas lereng tak jenuh. Penelitian ini terdiri dari dua tahap analisis numerik, yaitu analisis rembesan untuk mengetahui perubahan tekanan air pori pada lereng dan dilanjutkan dengan analisis dinamik time history tidak linear untuk menghitung deformasi yang terjadi akibat gempa. Kurva karakteristik tanah-air yang diambil dari hasil pengukuran akan diinkorporasikan pada lapisan atas tanah tak jenuh, catatan gempa Loma Prieta (1989), dan gempa Northridge (1994) akan digunakan sebagai akselerasi gempa. Enam skenario hujan dilanjutkan gempa akan dianalisis dan dibandingkan yaitu skenario intensitas hujan tidak berubah selama tiga hari, skenario intensitas hujan meningkat bertahap dan berkurang bertahap dalam tiga hari, dan skenario intensitas hujan acak selama tiga hari.

Rain and earthquake affect the stability of the slope. Rain results in infiltration on the slope which causes a decrease in negative pore water pressure on the slope and increases the groundwater level. Meanwhile, the seismic load from earthquake causes deformation on the slopes. Slope will experience even more critical condition if the effects of rain and earthquake are combined. This study aims to determine the influence of rain followed by earthquake on the stability of the unsaturated slope. This study consists of two stages of numerical analysis, which are seepage analysis to determine changes in pore water pressure on the slope and followed by non-linear time history dynamic analysis to calculate the deformation that occurs due to the ground motion. The soil-water characteristic curve from the field measurement will be incorporated in the upper layer of unsaturated soil and the Loma Prieta (1989) and Northridge (1994) earthquakes acceleration recording will be used. Six scenarios of rainfall followed by earthquake will be analyzed and compared, which are the scenario of rain intensity not changing for three days, the scenario of rain intensity gradually increasing and decreasing gradually, and the scenario of random rain intensity."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rizka Hanna Pramitha
"Salah satu aspek yang perlu diperhatikan ketika melakukan operasi pertambangan adalah kelerengan. Kondisi lereng yang tidak stabil dapat menghambat proses produksi, sehingga diperlukannya infrastruktur yang tepat dan aman untuk mengoptimalkan kegiatan penambangan. Fasilitas Penampungan Residu (FPR) digunakan sebagai sarana infrastruktur untuk menampung limbah hasil proses pencucian material bauksit. Air dari kolam pengendapan perlu dijaga agar tetap ditempat yang disediakan dan dapat dikendalikan, sehingga perlu dibuat tanggul di sekitar kolam. Penelitian ini dilakukan di lokasi kolam pengendapan PT. Cita Mineral Investindo Tbk site Air Upas, Kabupaten Ketapang, Kalimantan Barat. Kondisi lereng yang tidak stabil dapat menghambat proses produksi dan mengakibatkan target produksi tidak tercapai dan membahayakan keselamatan pekerja. Dengan demikian, penelitian ini dilakukan dengan tujuan analisis lebih lanjut terkait kestabilan tanggul tersebut. Parameter atau data yang digunakan adalah tinggi air kolam, geometri lereng, dan sifat fisik serta mekanik tanah seperti unit weight, kohesi, dan sudut geser dalam. Pengujian sifat fisik dan mekanik pada penelitian ini dilakukan pada tiga titik, yaitu UP-01, UP-02, dan UP-03. Metode kesetimbangan batas digunakan dalam mendapatkan nilai faktor keamanan sehingga dapat direkomendasikan rencana desain dan spesifikasi tertentu pendukung faktor keamanan yang tidak stabil. Garis penampang pada area ini dibagi menjadi 4 penampang, yaitu A-A’, B-B’, C-C’, dan D-D’. Berdasarkan hasil analisis kestabilan lereng, lereng A-A’ memiliki faktor keamanan yang tidak stabil, sedangkan lereng B-B’, C-C’, dan D-D’ memiliki faktor keamanan yang stabil. Rekomendasi geometri lereng stabil diberikan untuk lereng A-A’ hingga faktor keamanannya menjadi stabil. Pada kolam 4 (D-D’), kapasitas air maksimum yang ditampung adalah sebesar 110,593 m3, kolam 6 (C-C’) sebesar 1,129,613 m3, kolam 15C (A-A’) sebesar 239,027 m3, dan kolam 16 (B-B’) sebesar 103,271 m3 berdasarkan peraturan dari Keputusan Menteri ESDM Nomor 1827 K/30/MEM/2018, di mana kapasitas maksimum air kolam 80% dari volume kolam tersebut.

One crucial aspect to consider in mining operations is slope stability. Unstable slope conditions can impede the production process, necessitating the implementation of appropriate and secure infrastructure to optimize mining activities. Sedimentation ponds are employed as infrastructure facilities to contain waste from the bauxite washing process. The water in the sediment pond must be contained in the designated area and controlled, requiring the construction of embankments around the pond. This research was conducted at sedimentation ponds site of PT. Cita Mineral Investindo Tbk in Air Upas, Ketapang Regency, West Kalimantan. Unstable slope conditions can impede the production process, leading to unmet production targets and posing a danger to workers’ safety. Thus, this research aims to conduct further analysis regarding the stability of the embankment. Parameters or data used include groundwater levels, slope geometry, and the physical and mechanical properties of the soil, such as unit weight, cohesion, and internal friction angle. The limit equilibrium method is employed to obtain the safety factor values, allowing for the recommendation of a redesign plans and specifications to support unstable safety factors. The cross sectional area are divided into 4 sections, namely A-A’, B-B’, C-C’, and D-D’. Based on the results of the slope stability analysis, slope A-A’ has an unstable safety factor, while slopes B-B’, C-C’, and D-D’ have a stable safety factor. Recommendations for stable slope geometry are given for slope A-A’ by trial and error until the safety factor becomes stable. In D-D’, the maximum water capacity stored is 110,593 m3, 1,129,613 m3 for C-C’, 239,027 m3 for A-A’, and 103,271 m3 for B-B’ based on regulations from the Decree of the Minister of Energy and Mineral Resource, Number 1827 K/30/MEM/2018, where the maximum capacity of RSF water is 80% of the RSF volume."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bibin Krissandi
"Sungai dengan berbagai macam sifat dan karakteristiknya, memungkinkan banyak penelitian dapat dilakukan mengenainya. Sesuai hukum fisika fluida, suatu massa air pada ketinggian tertentu akan melakukan pergerakan mengikuti kemiringan bidang yang dilaluinya ke tempat yang lebih rendah. Energi pergerakan massa air yang didapat dan energi potensial tersebut melakukan penggerusan pada permukaan tanah yang dilaluinya. Sehingga mengakibatkan terjadinya alur aliran. Pada wilayah hulu sungai, kelerengan cukup tinggi sehingga pergerakan massa air, akon cepat. Energi gerak tersebut mampu melakukan penggerusan yang cukup tinggi. sehingga alur aliran sungai di bagian hulu, sempit dan curam. Sedangkan di bagian hilir angkutan endapan dari aliran sudah semakin besar. sehingga energi gerak dan kemampuan gerusnya berkurang, sehingga mengakibatkan alur lebih dangkal serta bentuk alur aliran, lebardan landai.
Dengan melihat fenomena tersebut diatas maka dapat djteliti panjang maksimum yang ditimbulkan akibat massa air yang melakukan pergerakan pada ketinggian tertentu. Asumsi yang mendasari konsep tersebut adalah bahwa perbedaan ketinggian alur hulu dan hilir akan mempengaruhi kecepatan massa air, sedangkan panjang jelajah itu menurut hukum fisika tergantung pada kecepatan massa. Oleh karena itu, hipotesisnya adalah panjang suatu alur sungai merupakan fungsi dari perbedaan ketinggian hulu dan hilirnya.
Peta yang dipakai untuk membuk+ikan hipotesa ini adalah peta topografi yang dibuat sekitar tahun 50-an. Mungkin panjang sungai saat ini sudah tidak sesuai dengan peneli+ian ini, mengingat banyak pengaruh eksogen yang telah mempengaruhi ketinggian hulu dan hilir potongan alur sungai. Ketinggian dan panjang tiap potongan alur sungai saat ini terjadi perubahan dari yang tertera di peta tahun 1950. Akan tetapi dengan berdasarkan peta tersebut saja, cukup untuk dapat dilakukan suatu prediksi mengenai perilaku umum suatu sungai utama."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S34794
UI - Skripsi Membership  Universitas Indonesia Library