Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
"Absorption of hydrophobic volatile organic compounds (VOC) such as toluene, was studied. In order to characterise the absorption of toluene/oil solvent systems, the Henry?s constant (H) was determined. Prediction of Henry?s constants are also carried out using UNIFAC-FV model which is known to be suitable for hydrocarbon gases and high-boiling point hydrocarbon solvent.kg/cm2, 220 kg/cm2 dan 260 kg/cm2."
620 JTEK 9 (1-2) 2010
Artikel Jurnal  Universitas Indonesia Library
cover
Aris Priyanto
"Teknologi adsorpsi dengan memanfaatkan karbon aktif merupakan teknologi pengendalian VOC yang cukup banyak digunakan karena murah dan sederhana serta mempunyai efisiensi yang cukup tinggi untuk me-recover VOC.
Uji adsorpsi aseton dan kloroform terhadap karbon aktif kering (kadar air ± 0%) dan basah (kadar air ± 10%) pada temperatur adsorpsi 27°C menghasilkan kurva terobosan yang mengikuti S-shape dari emisi 10°, 20° dan 30°C, sedangkan kurva terobosan dan kapasitas adsorpsi dibawah ini hanya untuk emisi 30°C terhadap aseton dan kloroform. Dari kurva terobosan dapat dilihat karbon aktif kering mampu mengadsorp kadar uap aseton dari 29 mg/L sampai 409,81 mg/L, uap kloroform dari 29 mg/L sampai 900,83 mg/L. Untuk karbon aktif basah dapat mengadsorp kadar uap aseton dari 17 mg/L sampai 410,33 mg/L, dan uap kloroform dari 17 mg/L sampai 1002,95 mg/L.
Dari kurva terobosan dapat ditentukan kemampnan adsorpsi karbon aktif atau kapasitas adsorpsi karbon aktif (q*) untuk mengadsorp adsorbat. Karbon aktif kering mampu mengadsorp uap aseton sebesar 8184,53 μmol/gr karbon aktif kering; uap kloroform sebesar 7700,21 μmol/gr karbon aktif kering. Untuk karbon aktif basah dapat mengadsorp uap aseton sebesar 5420,06 μmol/gr karbon aktif basah; uap kloroform sebesar 5764,20 μmol/gr karbon aktifbasah.
Penentuan Iaju adsorpsi dilakukan pada daerah linier dari kedua jenis adsorbat. Laju adsorpsi aseton pada temperatur adsorpsi 27°C untuk karbon aktif keting mengikuti persamaan r = 0,1290 (q*- q) untuk daerah linier 0-57 menit, dengan karbon aktif basah, r = 0,1391(q*- q) untuk daerah linier 0-50 menit; klorofom, karbon aktif kering, r = 0,119 (q* - q) untuk daerah linier 0-65 menit, karbon aktif basah, r = 0,1293 (q* - q) untuk daerah linier 0-60 menit.
Kapasitas adsorpsi adsorbat pada karbon aktif dipengaruhi oleh temperatur adsorpsi. Hasil perhitungan panas adsorpsi aseton menggunakan karbon aktif kering menghasilkan harga panas adsorpsi (Q) sebesar - 29 kJ/mol dan dengan karbon aktif basah - 14 kJ/mol sedangkan pada adsorpisi kloroform sebesar -10 kJ/mol pada karbon aktif kering dan -15 kJ/mol pada karbon aktif basah. Ini menunjukkan adsorpsi yang terjadi merupakan adsorpsi fisika."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S49142
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudi Handradika
"Pekerja di lapangan migas, khususnya di lepas pantai memiliki risiko yang tinggi terhadap pajanan BTX di area kerja. Pajanan bersumber dari aktifitas yang langsung bersentuhan dengan uap dan gas hidrokarbon yang sifatnya mudah menguap pada suhu kamar (Volatile organic compounds - VOC) sehingga memungkinkan terhisap oleh para pekerja dan menimbulkan efek kesehatan. Penelitian ini bertujuan untuk memperkirakan tingkat risiko nonkarsinogenik dan karsinogenik dari Pajanan BTX terhadap pekerja lepas pantai beserta manajemen risiko yang harus dilakukan. Penelitian ini merupakan studi potong lintang menggunakan pendekatan analisis risiko kesehatan lingkungan (ARKL) yang meliputi 4 langkah penting: identifikasi bahaya, analisis dosis-respon, analisis pajanan dan karakterisasi risiko. Jumlah sampel berupa 95 orang pekerja tetap di perusahaan hulu migas X. Data penelitian diperoleh melalui wawancara dan pengukuran langsung, tingkat risiko dihitung dengan cara membagi asupan dengan dosis referensi BTX. Sebagai pembanding (control) dilakukan juga perhitungan terhadap 7 orang pekerja lepas pantai yang bekerja hanya di kantor (office).
Hasil penelitian menunjukkan risiko pajanan benzene non karsinogenik harus diwaspadai bagi pekerja lepas pantai dimana dari perhitungan diketahui nilai RQ (Risk Quotient) yang lebih dari satu baik untuk pajanan realtime (ada 21,05% pekerja) maupun pajanan lifetime (61,05% pekerja). Sementara untuk risiko pajanan non karsinogenik dari toluene dan xylene termasuk rendah. Ini ditunjukkan dari hasil perhitungan RQ untuk realtime maupun lifetime yang semuanya (100%) bernilai kurang dari satu (RQ <1). Untuk risiko kesehatan pajanan karsinogenik benzene, diperoleh bahwa 20% pekerja lepas pantai memiliki efek karsinogenik pada pajanan realtime dan 60% pekerja pada pajanan lifetime. Disimpulkan bahwa perlu dilakukan manajemen risiko terhadap pajanan senyawa benzene di lingkungan kerja lepas pantai, agar pekerja terhindar dari risiko kesehatan baik risiko nonkarsinogenik dan risiko karsinogenik jangka panjang.

This research has objective to predict carsinogenic and non carcinogenic effect of BTX exposure to offshore workers and the risk management required. It is cross sectional study which utilize the environmental health risk assessment approach. Sample consists of 95 offshore workers in upstream oil and gas company X. research data is compiled from direct interview and company measurement data. As a control, 7 administrative workers are involved in calculation.
The result of this research is non carcinogenic exposure of benzene must become a high concern which has risk quotient - RQ 21.05% at realtime exposure and 61.05% at lifetime exposure. There is little risk related to toluene and xylene. Its respectively RQ is lower than 1 for both of them. For carcinogenic health risk of benzene, 20% of offshore workers and 60% of offshore workers has carcinogenic effect to their health risk.It can be concluded that risk management is required for being applied in order to minimize the benzene health effect to offshore workers.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2015
T43732
UI - Tesis Membership  Universitas Indonesia Library
cover
Atikah Syahidah
"Senyawa organik volatil (VOC, Volatile Organic Compounds) merupakan polutan yang dapat menurunkan kualitas udara di dalam ruangan serta menjadi penyebab utama gangguan pernapasan seperti Infeksi Saluran Pernafasan Akut (ISPA) dan Sick Building Syndrome (SBS), sehingga udara di dalam ruangan harus dibersihkan dengan cara mendegradasi VOC. Salah satu aplikasi plasma non-termal untuk mendegradasi VOC adalah plasma ion negatif atau Negative Air Ion (NAI) yaitu udara yang terionisasi menjadi bermuatan negatif. Superoksida merupakan salah satu NAI yang paling banyak dihasilkan dan dapat menjadi agen pendegradasi VOC di udara. Kemampuan plasma ion negatif dalam mendegradasi VOC diteliti lebih lanjut dengan menggunakan studi kasus berupa etanol 1500 ppm dan toluena 600 ppm. Penelitian dilakukan dengan menginjeksikan gas etanol dan toluena ke dalam prototipe yang di dalamnya telah dilengkapi dengan generator plasma ion negatif yang menghasilkan tegangan DC sebesar 5,6 kV. Densitas ion negatif yang terukur di dalam prototipe sebesar 8 x 106 – 1,2 x 107 ion/m3. Removal efficiency pada etanol mencapai 99,94% selama waktu kontak 4 jam dengan konsentrasi akhir 0,97 ppm, sedangkan pada toluena mencapai 99,77% selama waktu kontak 5 jam dengan konsentrasi akhir 1,33 ppm. Kecepatan hembusan kipas mampu meningkatkan kinerja plasma ion negatif, dimana kecepatan kipas 1600 RPM pada tegangan sebesar 12 VDC memberikan hasil yang terbaik pada penelitian ini.

Volatile organic compounds (VOCs) are pollutants that can reduce indoor air quality and the main cause of respiratory disorders such as Acute Respiratory Infections (ARI) and Sick Building Syndrome (SBS). Because of that, the indoor air must be cleaned by degrading VOCs. One of the non-thermal plasma applications to degrade VOCs is negative ion plasma or Negative Air Ion (NAI), i.e., ionized air becomes negatively charged. Superoxide is one of the most widely produced NAI and can be a degrading agent for VOCs in the air. The ability of plasma negative ions in degrading VOCs was further investigated using case studies in 1500 ppm ethanol and 600 ppm toluene. The research was conducted by injecting ethanol and toluene gas into the prototype, equipped with a negative ion plasma generator that produces a DC voltage of 5.6 kV. The measured negative ion density in the prototype is 8 x 106 – 1.2 x 107 ion/m3. The Removal efficiency of ethanol reached 99.94% during a contact time of 4 hours with a final concentration of 0.97 ppm, while that of toluene reached 99.77% during a contact time of 5 hours with a final concentration of 1.33 ppm. Fan blowing speed can increase the performance of negative ion plasma, where the fan speed of 1600 RPM at a voltage of 12 VDC gives the best results in this study.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library