Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 255 dokumen yang sesuai dengan query
cover
Zuherman Rustam
"Komputasi intelejensia yang digunakan dalam masalah klasifikasi pola dapat digolongkan menjadi dua bagian, yaitu yang berbasis pada Neural Network dan yang berbasis pada Pembelajaran Statistika (Statistical Learning). Pembelajaran yang berbasis statistika, pertama kali ditemukan oleh Vapnik pada dekade tujuh-puluhan. Untuk masalah klasifikasi pola Vapnik mengembangkan metode hyperplane optimal separation, atau dikenal juga dengan nama metode Support Vector Machines (SVM). Pada awalnya SVM dirancang hanya untuk menyelesaikan masalah klasifikasi biner, yaitu dari data-data yang ada, diklasifikasikan menjadi dua kelas. Untuk mengklasifikasikan data yang terdiri dari lebih dari dua kelas, metode SVM tidak dapat langsung digunakan. Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah klasifikasi multikelas SVM yaitu: metode One-vs-One dan metode One-vs-Rest. Kedua metode ini merupakan perluasan dari klasifikasi biner SVM. Kedua metode tersebut akan dibahas di artikel ini dan akan dilihat kinerjanya dalam mengklasifikasikan aroma. Data aroma yang digunakan dalam percobaaan ini terdiri dari 3 jenis aroma, masing-masing aroma terdiri atas 6 kelas. Pembagian kelas ini berdasarkan pada konsentrasi alkohol yang dicampurkan pada masing-masing aroma. Misalkan untuk aroma A, terdapat 6 jenis aroma A dengan kandungan alkohol : 0%, 15%, 25%, 30%, 45% dan 75%. Kinerja dari kedua metode diukur berdasarkan kemampuan untuk mengenal dan mengklasifikasikan aroma, dengan tepat dan sesuai dengan jenis atau kelas, dari data yang diberikan.

Aroma classification using one-vs-one and one-vs-rest methods. Computational Intelligence used in pattern classification problem can be divided into two different parts, one based on Neural Network and the other based on Statistical Learning. The Statistical Learning discovered by Vapnik on 70-est decade. For the pattern classification, Vapnik developed hyperplane optimal separation, which is known as Support Vector Machines Method (SVM). In the beginning, SVM was designed only to solve binary classification problem, where data existing are classified into two classes. To classify data whose consist of more than two classes, the SVM method can not directly be used. There are several methods can be used to solve SVM multiclasses classification problem, they are One-vs-One Method and One-vs-Rest Method. Both of this methods are the extension of SVM binary classification, they will be discussed in this article so that we can see their performance in aroma classification process. Data of aroma used in this experiment is consisted of three classes of aroma, each of them has six classes. The division of this class is based on alcohol concentration mixed into each of those aromas. For example, for aroma A, there are six kinds of aroma A with different alcohol concentration: 0%, 15%, 25%, 30%, 45% and 75%. The performance of these methods is measured based on their ability to recognize and classify aroma, precisely and match with the right class or variety of data existed."
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"There are two categories of well-known approach (as basic principle of classification process) for leraning structure of Bayesian Neywork (BN) in data mining (DM): ...."
ITJOICT
Artikel Jurnal  Universitas Indonesia Library
cover
"Sistem Klasifikasi Dewey Decimal Classification ini merupakan salah satu sistem yang dikenal di kalangan pustakawan.Saking dikenalnya,hampir setiap pustakawan mengenal sistem ini minimal namanya dan bahkan mengetahui urutan kelasnya...."
SEBUPUI
Artikel Jurnal  Universitas Indonesia Library
cover
"Call number bagaikan nama panggilan seseorang atau nomor punggung pemain bola.Kita kita lebih mengenal Si nomor 17 untuk Christian Ronaldo ,atau si nomor 7 untuk David Beckham....."
SEBUPUI
Artikel Jurnal  Universitas Indonesia Library
cover
"There are many information which can be processed in many emails. Clasisification is a way to organize the informations which are be in the emails....."
Artikel Jurnal  Universitas Indonesia Library
cover
"This research aims to examine a new meyhod inserted in the process of signal feature recognition, namely the objct pre-analysis feature manipulation...."
Artikel Jurnal  Universitas Indonesia Library
cover
"Land cover information is vital for supporting decision concerning the management of the environment and for understanding the causes and trnds of human and natural processess on the earth surface...."
Artikel Jurnal  Universitas Indonesia Library
cover
"Seiring derasnya arus informasi berita elektronik, timbul kebutuhan untuk mengatur informasi tersebut sehingga pengguna dapat mengaksesnya dengan lebih mudah. Akan tetapi jika pengelompokan berita dilakukan secara manual, maka akan memakan waktu yang lama dan mahal. Klasifikasi dokumen secara otomatis sekiranya diperlukan untuk mengurangi biaya dan mempercepat pengaturan informasi. Salah satu metode yang dapat digunakan dalam pengklasifikasian yaitu Naïve Bayes Classifier. Fokus penelitian ini adalah meneliti karakteristik Naïve Bayes Classifier untuk memperoleh kinerja yang optimal dalam proses klasifikasi. Cara yang diterapkan pada penelitian ini yaitu dengan mengujicobakan metode tersebut dengan 3 perlakuan yaitu membandingkan kinerja sistem terhadap stemming maupun non stemming, berbagai proporsi dokumen pembelajaran dan jumlah kategori dalam klasifikasi. Tahapan penelitian dilakukan mulai dari studi pustaka, menerapkan metode Naïve Bayes Classifier dalam pengklasifikasian berita berbahasa Indonesia, melakukan uji coba dan analisa mengenai karakteristik metode ini serta menarik kesimpulan dari hasil analisa. Penelitian dilakukan terhadap 1351 dokumen berita berbahasa Indonesia dari situs www.suarapembaruan.com yang diambil pada bulan Januari 2004 sampai dengan bulan November 2004.
Hasil penelitian menunjukan bahwa Naive Bayes Classifier merupakan metode yang memiliki tingkat akurasi yang tinggi. Kinerja akan lebih baik jika metode ini diterapkan dengan stemming dibanding tanpa stemming walaupun selisih kinerja keduanya tidak terpaut jauh yaitu sekitar 3,87%. Selain itu, hasil penelitian juga menunjukan bahwa kinerja metode ini dipengaruhi oleh jumlah dokumen pembelajaran. Semakin banyak dokumen pembelajaran yang digunakan, maka akan semakin tinggi tingkat keakuratan metode ini. Hal ini terbukti dari uji coba kombinasi stemming dengan proporsi dokumen pembelajaran 90% yang mampu mencapai kinerja tertinggi selama penelitian yaitu recall sebesar 93,5%, precision 94,125% dan F-measure 93,81%. Hal menarik yang terjadi adalah akurasi masih tetap relatif tinggi walaupun dokumen pembelajaran secara ekstrim dikurangi menjadi 10%. Hal ini ditunjukan dengan recall sebesar 89,82%, precision 90,36% dan F-measure 90,1%.
Pada penelitian ini juga mengamati apakah Naïve Bayes Classifier merupakan metode klasifikasi yang stabil. Hal ini diteliti dengan membandingkan kinerja sistem terhadap banyaknya jumlah kategori dalam klasifikasi. Hasilnya ternyata jumlah kategori tidak mempengaruhi kinerja metode ini. NBC merupakan metode yang stabil jika dilihat dari segi kuantitas kategori."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Species diversity is one of the most important indeces used for evaluating the sustainability of forest communities. This study aims to characterize the forest communities and to identify and compare the plant species diversity in the study area...."
Artikel Jurnal  Universitas Indonesia Library
cover
Arsyian Rizki Pratama
"Telur ayam kampung atau telur ayam buras adalah telur ayam umum dikonsumsi masyarakat Indonesia sebagai makanan biasa atau juga sebagai obat. Pengklasifikasian kualitas telur ayam kampung. Dilakukan untuk dapat membedakan telur yang layak konsumsi dan tidak layak konsumsi. Beberapa penelitian serupa menggunakan Arduino dan sensor photodioda untuk melakukan klasifikasi, selain itu juga ada beberapa penelitian yang menggunakan machine learning untuk membedakan jenis telur. Dari penelitian yang telah di lakukan dilihat bahwa akurasi masih kecil, dan dirasa masih bisa di ditingkatkan. Dalam penelitian ini dibuat sistem klasifikasi kualitas telur ayam kampung dengan menggunakan algoritma you only look once (YOLO) versi 4. Data set yang digunakan pada penelitian ini berupa data set dari 4 kategori kondisi telur atau 4 class antara lain telur baik, busuk, fertil, dan telur retak. Data set diakuisisi dengan disinari dengan lampu led yang diberikan tegangan 12V pada kotak akuisisi, dan citra ditangkap dengan webcam Logitech c270. Dari pelatihan data set citra telur ayam kampung dihasilkan akurasi sebesar 96.76% di pengujian pada validation set dan sebesar 95.26% pada test set. Dari kasus pendeteksian kualitas telur ayam kampung dengan deep learning berbasis algoritma YOLOv4 ini memungkinkan adanya pengembangan lebih lanjut.

Local breed chicken eggs or local breed chicken eggs are chicken eggs that are commonly consumed by Indonesian people as ordinary food or also as medicine. Classification of local breed chicken egg quality. This is done to be able to distinguish eggs that are suitable for consumption and not suitable for consumption. Several similar studies used Arduino and photodiode sensors to carry out classification, besides that there were also several studies using machine learning to distinguish types of eggs. From the research that has been done, the accuracy is still small, and it is felt that it can still be improved. In this research, local breed chicken egg quality classification system was created using you only look once (YOLO) version 4 algorithm. The dataset used in this study was a data set of 4 categories of egg conditions or 4 classes including good eggs, rotten, fertile, and cracked eggs. The dataset was acquired by irradiating it with a led lamp supplied with a 12V voltage on the acquisition box, and the image was captured with a Logitech c270 webcam. From the local breed chicken egg image dataset training, an accuracy of 96.76% was obtained in the validation set test and 95.26% in the test set. From the case of detecting local breed chicken egg quality with deep learning based on the YOLOv4 algorithm, it allows for further development.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>