Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Siti Aminah
"Makalah ini mcmbahas tentang pengelompokan data melalui metoda K-Muans Clustering. Hasil penjgelompokan metoda tersebut digunakan untuk memetakan data rataan nilai UMPTN IPA per kabupaien/kodya di seluruh Indonesia, dengan menggunakan Arc-View GIS versi 3.1. Dari hasil pemetaan tersebut diharapkan data yang merupakan rataan nilai UMPTN IPAtlersebut akan Iebih mudah dan menarik untuk dibaca. Terutama bagi pengambil kebijakan dalam dunia pendidikan. Dengan melihai hasil pemetaan tersebut diharapkan mereka bisa meningkatkan kualilas pendidikan atau melakukan perbaikan-perbaikan dalam dunia pcndidikan di Indonesia secara global, sesuai dengan kualitas pcndidikannya"
Depok: Universitas Indonesia, 2003
SAIN-8-2-2003-12
Artikel Jurnal  Universitas Indonesia Library
cover
Nur Fitriani
"Kinerja mahasiswa adalah bagian penting dari suatu perguruan tinggi. Hal ini dikarenakan salah satu kriteria  perguruan tinggi yang berkualitas didasarkan pada  prestasi akademik yang baik. Tahun pertama perkuliahan adalah periode mahasiswa untuk meletakkan dasar atau fondasi yang selanjutnya akan mempengaruhi keberhasilan akademik karena tahun pertama memainkan peran penting dalam membentuk sikap dan kinerja siswa di tahun-tahun berikutnya. Pada Penelitian ini, pendekatan Semi-supevised Learning digunakan dalam mengklasifikasi kinerja mahasiswa tahun pertama di Departemen Matematika, Universitas Indonesia. Kinerja Mahasiswa dibagi menjadi dua kategori, yaitu sedang dan tinggi. Sampel pada penelitian ini adalah 140 mahasiswa tahun pertama dengan menggunakan 27 fitur. Ada dua proses yang digunakan, yaitu proses clustering dan klasifiksi. Pada proses clustering, mahasiswa dibagi menjadi tiga cluster/kelompok menggunakan K-Means Clustering. Sedangkan dalam proses klasifikasinya menggunakan Naïve Bayes Classifier. Kinerja algoritma yang diusulkan menghasilkan nilai akurasi 96.67% dan sensitifitas 94.44%.

Students performance is an essential part of a higher learning institution because one of the criteria for a high-quality university is based on its excellent record of academic achievements. The first- year of the lecture is the student period in laying the foundation that will affect academic success because first-year plays an important role in shaping the attitudes and performance of students in the following years. In this study, a semi-supervised learning approach is used to classify the performance of first-year students in the Department of Mathematics, Universitas Indonesia. Student performance will be divided into two categories, namely medium and high. The sample in this study consist of 140 first-year students with 27 features. There are two processes used i.e. clustering and the classification process. In the clustering process, the data is divided into three clusters using K-Means Clustering and the Naïve Bayes Classifier is chosen to classify it. The performance of the proposed algorithms is stated by accuracy and sensitivity value i.e. 96.67% and 94.44% respectively."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cisco Salya Wicaksana
"Education has evolved with the rise of electronic learning applications and websites, necessitating students to adapt to a new learning style, exemplified by SCeLE, the learning management system (LMS), based on Moodle, for the Faculty of Computer Science at Universitas Indonesia. By analyzing SCeLE log data across three courses—APAP, CAI, and DAA—and applying the K-Means clustering algorithm, four distinct student behavior patterns emerged: quality students, daily observers, deadliners, and at-risk students. These patterns are evaluated using three key metrics: session intensity, frequency of access, and engagement in interactive activities like assignment submissions and quizzes. The findings reveal that course design and integration of SCeLE features significantly influence student participation. APAP and CAI, with structured weekly tasks and active use of SCeLE tools, foster higher engagement, while DAA struggles with limited interactivity and a heavy content load. Although students generally view SCeLE as a useful learning supplement, the platform's inconsistent use across courses and limited interactive features hinder its full potential.
...... Pendidikan telah berkembang dengan munculnya aplikasi dan situs pembelajaran elektronik, yang mengharuskan siswa untuk beradaptasi dengan gaya belajar baru, seperti yang ditunjukkan oleh SCeLE, sistem manajemen pembelajaran (LMS) berbasis Moodle di Fakultas Ilmu Komputer Universitas Indonesia. Dengan menganalisis data log SCeLE dari tiga mata kuliah—APAP, CAI, dan DAA—dan menerapkan algoritma K-Means clustering, ditemukan empat pola perilaku siswa yang berbeda: quality students, daily observers, deadliner, dan at-risk students. Pola-pola ini dievaluasi menggunakan tiga metrik utama: intensitas sesi, frekuensi akses, dan keterlibatan dalam aktivitas interaktif seperti pengumpulan tugas dan kuis. Temuan menunjukkan bahwa desain mata kuliah dan integrasi fitur SCeLE sangat mempengaruhi partisipasi siswa. APAP dan CAI, dengan tugas mingguan terstruktur dan penggunaan aktif alat SCeLE, mendorong keterlibatan yang lebih tinggi, sementara DAA menghadapi kesulitan dengan interaktivitas yang terbatas dan beban konten yang berat. Meskipun siswa umumnya memandang SCeLE sebagai pelengkap pembelajaran yang berguna, penggunaan platform yang tidak konsisten di berbagai mata kuliah dan fitur interaktif yang terbatas menghambat potensi penuhnya."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Novianto
"Pertumbuhan pemanfaatan internet telah meningkatkan perhatian terhadap keamanan data. Pada tahun 2014, Projek SHINE (SHodan Intelligence Extraction) telah menerbitkan laporan penilaian keamanan skala besar untuk perangkat yang terhubung ke Internet. Namun, berdasarkan laporan tersebut, jumlah informasi mengenai IP address Indonesia yang berhasil didapatkan masih sedikit. Terdapat sebanyak 7.182 IP address dari Indonesia, yaitu sekitar 0,0032% dari total 2.186.971 IP address yang berhasil dikumpulkan oleh Projek SHINE. Dalam penulisan tesis ini, penulis mengajukan inisiatif untuk melakukan analisis kerentanan semua informasi Autonomous System Number (AS Number) di Indonesia dari Shodan. Penulis telah menyusun dataset semua informasi AS Number di Indonesia antara lain 12.787 port, 79 sistem operasi, 409 produk, 3.634 domain, 145.543 IP address, dan 790 organisasi. Penulis menggunakan algoritma K-Means clustering untuk mengelompokkan AS Number ke dalam beberapa kelas sesuai dengan tingkat paparan di shodan. Berdasarkan hasil pengelompokan, penulis mendapatkan 4 kelas AS Number antara lain 1.075 AS Number di kelas: 0 (belum terdapat informasi mengenai AS Number tersebut di Shodan), 614 AS Number di kelas: 1 (tingkat paparan rendah), 9 AS Number di kelas: 2 (tingkat paparan sedang), dan 1 AS Number di kelas: 3 (tingkat paparan tinggi). Informasi ini dapat dimanfaatkan oleh Kementerian yang menangani bidang Teknologi Informasi dan Komunikasi dan Badan yang menangani Keamanan Siber di Indonesia untuk menghimbau organisasi pengelola AS Number agar mewaspadai potensi kerentanan yang dinformasikan oleh Shodan dan dimanfaatkan oleh hacker.
......The growth of internet-enabled devices has increased interest in cybersecurity. In 2014, Project SHINE (SHodan INtelligence Extraction) published a report of large-scale security assessments for devices connected to the Internet. However, the number of IP addresses harvested from Indonesia in 2014 is very small. There were 7.182 IP address from Indonesia. It was about 0,0032% from the total 2.186.971 IP addresses. In this paper, we propose an initiative to gather all information for all Autonomous System Number (AS Number) from Indonesia in Shodan. We have gathered a dataset about all information of AS Numbers in Indonesia such as 12.787 unique ports, 79 unique operating systems, 409 unique products, 3.634 unique domains, 145.543 unique IP addresses, and 790 unique organizations. We use the K-Means algorithm to cluster all AS Numbers into several classes according to the exposure level in shodan. Based on the result, we have 4 classes of AS Numbers. There are 1.075 AS Numbers in class:0 (no information in Shodan yet), 614 AS Numbers in class:1 (exposure level = low), 9 AS Numbers in class:2 (exposure level = medium), and 1 AS Number in class:3 (exposure level = high). This information can be used to warn the organizations that manage AS Numbers in Indonesia to be aware of the security and the threats to their systems."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nova Yuniarti
"[ABSTRAK
Berdasarkan data WHO tahun 2014, diperkirakan sekitar 15 juta orang di dunia
yang terinfeksi hepatitis B (HBsAg+) juga terinfeksi hepatitis D. Infeksi hepatitis
D dapat terjadi bersamaan (koinfeksi) atau setelah seseorang terkena hepatitis B
kronis (superinfeksi). Penyakit hepatitis B disebabkan oleh virus HBV dan
penyakit hepatitis D disebabkan oleh virus HDV. HDV tidak dapat hidup tanpa
HBV. Hepatitis D erat hubungannya dengan infeksi virus HBV, sehingga sangat
realistis bila setiap usaha pencegahan terhadap hepatitis B, maka secara tidak
langsung mencegah hepatitis D. Pada tesis ini akan dibahas bagaimana hasil
pengelompokan barisan DNA HBV menggunakan algoritma k-means clustering
dengan menggunakan perangkat lunak R. Dimulai dengan mengumpulkan barisan
DNA HBV yang diambil dari GenBank, kemudian dilakukan ekstraksi ciri
menggunakan n-mers frequency, dan hasil ekstraksi ciri barisan DNA tersebut
dikumpulkan dalam sebuah matriks dan dilakukan normalisasi menggunakan
normalisasi min-max dengan interval [0, 1] yang akan digunakan sebagai data
masukan. Jumlah cluster yang dipilih dalam penelitian ini adalah dua dan
penentuan centroid awal dilakukan secara acak. Pada setiap iterasi dihitung jarak
masing-masing objek ke masing-masing centroid dengan menggunakan Euclidean
distance dan dipilih jarak terpendek untuk menentukan keanggotaan objek di
suatu cluster sampai akhirnya terbentuk dua cluster yang konvergen. Hasil yang
diperoleh adalah virus HBV yang berada pada cluster pertama lebih ganas
dibanding virus HBV yang berada pada cluster kedua, sehingga virus HBV pada
cluster pertama berpotensi berevolusi dengan virus HDV menjadi penyebab
penyakit hepatitis D.

ABSTRACT
Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D., Based on WHO data, an estimated of 15 millions people worldwide who are
infected by hepatitis B (HBsAg+) are also infected by hepatitis D. Hepatitis D
infection can occur simultaneously with hepatitis B (co infection) or after a person
is exposed to chronic hepatitis B (super infection). Hepatitis B is caused by the
HBV virus and hepatitis D is caused by HDV virus. HDV can not live without
HBV. Hepatitis D virus is closely related to HBV infection, hence it is really
realistic that every effort of prevention against hepatitis B can indirectly prevent
hepatitis D. This thesis discussed the clustering of HBV DNA sequences by using
k-means clustering algorithm and R programming. Clustering processes is started
with collecting HBV DNA sequences that are taken from GenBank, then
performing extraction HBV DNA sequences using n-mers frequency and
furthermore the extraction results are collected as a matrix and normalized using
the min-max normalization with interval [0, 1] which will later be used as an input
data. The number of clusters is two and the initial centroid selected of cluster is
choosed randomly. In each iteration, the distance of every object to each centroid
are calculated using the Euclidean distance and the minimum distance are selected
to determine the membership in a cluster until two convergent clusters are created.
As the result, the HBV viruses in the first cluster is more virulent than the HBV
viruses in the second cluster, so the HBV viruses in the first cluster can potentially
evolve with HDV viruses that cause hepatitis D.]"
2015
T44666
UI - Tesis Membership  Universitas Indonesia Library