Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Alphi Kemal Hisyam
"

Padi merupakan tanaman pangan utama yang dikonsumsi oleh sebagian besar populasi penduduk di Indonesia untuk makanan pokok sehari-hari. Hal tersebut didukung dengan konsumsi beras yang mencapai hingga 1,55 ton pada tahun 2018, dan Kabupaten Sukabumi berada pada lima besar kabupaten dengan produksi beras terbesar di Indonesia. Penelitian ini bertujuan untuk menganalisis musim tanam padi berdasarkan indeks vegetasi dan menganalisis estimasi produktivitas padi di Kecamatan Cikakak. Untuk dapat mengetahui pola musim tanam di Kecamatan Cikakak, digunakan indeks tiga vegetasi, yaitu NDVI, ARVI, dan MSAVI. Indeks vegetasi terebut diolah dalam citra Sentinel-2 menggunakan Google Earth Engine. Setelah itu, untuk mendapatkan estimasi produktivitas dilakukan validasi lapangan dari nilai indeks vegetasi yang didapatkan. Estimasi akan dikaitkan dengan faktor fisik dari Kecamatan Cikakak, yaitu ketinggian. Oleh karena itu, maka hasil dari validasi tersebut akan dibandingkan pada setiap titik dengan faktor tersebut. Hasil dari penelitian ini adalah pola fase dan musim tanam dari sawah di Kecamatan Cikakak, serta waktu tanam yang berbeda-beda pada setiap sawahnya dan pada setiap desanya. Estimasi produktivitas padi di Kecamatan Cikakak memiliki rata-rata 8,87 ton/ha untuk NDVI, 8,89 ton/ha untuk MSAVI, dan 6,50 ton/ha untuk ARVI. Sebagian besar sawah yang memiliki produktivitas yang cukup tinggi berada di ketinggian 250 – 500 mdpl. Indeks vegetasi NDVI menjadi indeks dengan akurasi paling tinggi diantara kedua indeks vegetasi lainnya.

 


Paddy is the main food crop consumed by most of the population in Indonesia for daily staples. This is supported by rice consumption which reaches up to 1.55 tons in 2018 and Sukabumi Regency is in the top 5 districts with the largest rice production in Indonesia. This study aims to analyze the rice planting season based on vegetation index and analyze the estimation of rice productivity in Cikakak District. To be able to know the planting season pattern in Cikakak Subdistrict, vegetation index is used, there are 3 vegetation indexes used in this study, there is NDVI, ARVI, and MSAVI. The vegetation index is processed in Sentinel-2 imagery using Google Earth Engine, after that to get an estimate of productivity field validation of the vegetation index value obtained, in addition to the estimation will be associated with physical factors from the District of Cikakak, therefore the results of the validation will be compared at each point with these factors. The results of this study are the phase pattern and planting season of rice fields in the Cikakak sub-district when planting time is different in each rice field and in each village. Then for the estimation of rice productivity in Cikakak Subdistrict, it has an average of 8.87 tons / Ha for NDVI, 8.89 tons / Ha for MSAVI and 6.50 tons / Ha for ARVI, and most rice fields that have quite high productivity are at an altitude of 250 - 500 meters above sea level. In addition to using the NDVI vegetation index, it is the index with the highest accuracy among the two other vegetation indices to be able to estimate rice productivity.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rana Alimah Laili
"

Beras merupakan komoditas penting dan strategis bagi masyarakat Indonesia dalam mempertimbangkan makanan, dalam hal ini beras merupakan kebutuhan pokok. Penelitian ini bertujuan untuk mengetahui fase pertumbuhan padi sawah dan perkiraan produktivitas padi di Kabupaten Jatisari, Kabupaten Karawang. Penelitian ini menggunakan dua algoritma untuk menentukan fase pertumbuhan tanaman padi, yaitu Normalized Difference Vegetation Index (NDVI) dan Atmosphericically Resistant Vegetation Index (ARVI). Algoritma NDVI umumnya digunakan dalam beberapa penelitian yang berkaitan dengan fase pertumbuhan tanaman padi dan produktivitasnya, penggunaan algoritma ARVI dalam penelitian ini disesuaikan dengan area penelitian karena nilai ARVI menurut EOS (Earth Observing System) digunakan untuk daerah dengan kandungan aerosol atmosfer tinggi (hujan, kabut, debu, asap, dan polusi udara). Sehingga penggunaan algoritma ARVI lebih efektif daripada algoritma NDVI di daerah penelitian ini. Dalam memproses data, kami menggunakan Google Earth Engine (GEE) sebagai alat. Dan untuk uji validasi dalam penelitian ini digunakan Confussion Matrix yang mencakup akurasi keseluruhan, akurasi produsen, dan akurasi pengguna. Berdasarkan nilai NDVI dan ARVI, Kecamatan Jatisari memiliki dua fase tanam yaitu dengan satu kali panen dan dua kali panen. Dan hasil penelitian ini adalah persamaan regresi linier dengan rumus, Produktivitas (ton / ha) = 6.9513 (NDVI) + 3.3384, dengan variasi nilai koefisien (R2) = 0,898 dan Produktivitas (ton / ha) ) = 3,9849 (ARVI) + 7,3992, dengan variasi nilai koefisien (R2) = 0,6505. Dan untuk estimasi produktivitas padi di Kabupaten Jatisari memiliki rata-rata, 7,55 ton / ha dengan akurasi 93,29% untuk NDVI dan 90,43% untuk ARVI. Ditemukan bahwa algoritma NDVI lebih efektif untuk menentukan fase pertumbuhan tanaman padi dibandingkan dengan algoritma ARVI. Dan penelitian ini membuktikan bahwa faktor atmosfer tidak terlalu berpengaruh di Kabupaten Jatisari.

 


Rice is an important and strategic commodity for the Indonesian peoples staple food, in this case rice is a basic need. Technology-based monitoring is needed such as remote sensing for rice plants in Indonesia. This study aimed to determine the growth phase of wetland rice and estimated rice productivity in Jatisari District, Karawang Regency. This research used two algorithms to determine the growth phase of rice plants, they were Normalized Difference Vegetation Index (NDVI) and Atmospherically Resistant Vegetation Index (ARVI). NDVI algorithm was commonly used in several studies related to the growth phase of rice plants and their productivity, the use of the ARVI algorithm in this study was adjusted to the study area because the ARVI value according to EOS (Earth Observing System) is used for areas with high atmospheric aerosol content (rain, fog, dust, smoke and air pollution). So that the use of the ARVI algorithm is more effective than the NDVI algorithm in this research area. In processing data we use Google Earth Engine (GEE) as tool. And for the validation test in this study used Confussion Matrix which includes overall accuracy, producer accuracy, and user accuracy. This accuracy test is considered the most suitable because the data used are pixel and object based. Based on NDVI and ARVI values, Jatisari District has two planting phases, namely one harvest and two harvests. And the results of this research are a linear regression equation with the formula, Productivity (ton / ha) = 6,9513(NDVI ) + 3,3384, with the variation of  the coefficient value (R2) = 0,898 and  Productivity (ton/ha)  = 3,9849(ARVI) + 7,3992, with the variation of  the coefficient value (R2) = 0,6505. And for the estimation of rice productivity in Jatisari District had an average, 7,55 ton/ha with an accuracy of 83,29% for NDVI and 90,43% for ARVI. Found that the NDVI algorithm is more effective to determine the growth phase of rice plant compared to the ARVI algorithm. And this research proves that atmospheric factors are not very influential in Jatisari District.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gadis Zeffilda
"Tanaman karet sebagai tanaman yang dapat berperan penting dalam penyerapan serta penyimpanan karbon. Penyerapan karbon dilakukan sebagai salah satu upaya untuk mengurangi efek gas rumah kaca di atmosfer. Kapasitas penyerapan stok karbon pada tanaman karet dapat dilihat dari nilai biomassa yang dimilikinya. Penelitian ini bertujuan untuk menganalisis persebaran stok karbon tanaman karet dan hubungannya dengan umur tanaman karet. Persebaran stok karbon di daerah wilayah penelitian dengan menggunakan pendekatan indeks vegetasi, serta analisis regresi dan deskriptif. Indeks vegetasi yang digunakan yaitu MSAVI, OSAVI, SAVI, GNDVI, dan ARVI yang diperoleh dari pengolahan citra satelit Sentinel 2- A. Nilai biomassa pada tanaman karet didapatkan dari persamaan alometrik. Hasil penelitian menunjukkan bahwa persebaran stok karbon hampir di seluruh wilayah Pusat Penelitian Karet Sembawa. Hubungan umur tanaman karet dengan nilai stok karbon cenderung rendah karena dipengaruhi oleh jenis klon, pengelolaan tanaman karet, dan penyakit tanaman karet.

Rubber is a plant that can play an important role in carbon sequestration and storage. Carbon sequestration is carried out as an effort to reduce the effect of greenhouse gases in the atmosphere. The absorption capacity of carbon stock in rubber plants can be seen from the value of its biomass. This study aims to analyze the distribution of carbon stock in rubber plants and its relationship with the age of rubber plants. The distribution of carbon stock in the study area using a vegetation index used is MSAVI, OSAVI, SAVI, GNDVI, and ARVI obtained from processing the Sentinel 2-A satellite imagery. The value of biomass in rubber plants is obtained from the allometric equation. The results showed that the carbon stock distribution in almost all areas of the Sembawa Rubber Research Centre The relationship between the age of rubber plants and the value of carbon stock tends to be low due to it is influenced by the type of clone, management of rubber plants, and rubber plant diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Medina Nur Anisa
"Elaeis guineensis Jacq. atau yang lebih kita kenal dengan kelapa sawit menjadi salah satu spesies tanaman tahunan dan komoditas perkebunan yang sangat penting untuk manusia dan keanekaragaman hayati di dunia. Kebun Cikabayan IPB sebagai salah satu kebun penelitian yang dikelola oleh IPB University dengan sistem pertanian terpadu (Integrated Farming System) dan termasuk ke dalam jenis perkebunan rakyat karena memiliki luas kebun yang cenderung lebih kecil, kurang terstruktur, dan lebih heterogen dalam struktur ruang dan usia sehingga menghasilkan pola perkebunan yang tidak spesifik. Penelitian ini bertujuan untuk memitigasi beberapa masalah besar yang dihadapi oleh industri kelapa sawit salah satunya adalah penyebaran penyakit atau hama dengan memberikan deteksi dini dan pemantauan berkelanjutan untuk penyaikt BSR. Basal Stem Rot (BSR) atau Penyakit Busuk Pangkal Batang merupakan salah satu ancaman penyakit yang terjadi pada kelapa sawit yang disebabkan oleh jamur Ganoderma boinense sebagai penyakit utama yang mempengaruhi perkebunan kelapa sawit di Malaysia dan Indonesia. Dalam penelitian ini dilakukan pemantau status kelapa sawit menggunakan penginderaan jauh dengan deteksi dini dan memetakan penyakit BSR berdasarkan model tingkat infeksi yang ditunjukkan dan menganalisis aspek yang mempengaruhi, yaitu umur tanaman, generasi tanaman, jarak dari sungai, dan kelerengan wilayah. Tingkat infeksi oleh Ganoderma boinense pada kelapa sawit dideteksi dengan menentukan training sampel untuk membuat model tingkat infeksi penyakit BSR dan melihat perbedaan nilai spektral yang dihitung dari indeks vegetasi Normalized Difference Vegetation Index (NDVI) dan Atmospherically Resistant Vegetation Index (ARVI) menggunakan citra multispektral Sentinel 2A. Hasil menunjukkan indeks ARVI memiliki akurasi yang lebih baik dengan nilai RMSE sebesar 0,557 dibandingkan NDVI sebesar 0,6411 untuk mendeteksi tingkat serangan infeksi penyakit BSR dan Aspek yang berpengaruh secara signifikan, yaitu umur tanaman dan kelerengan wilayah, sedangkan generasi tanaman dan jarak dari sungai tidak menunjukkan pengaruh yang signifikan dikarenakan wilayah penelitian yang generasi tanaman yang masih sedikit dan hanya dilewati oleh aliran air kecil.

Elaeis guineensis Jacq. or more commonly known as oil palm, is one of the most important annual plant species and plantation commodities for humans and biodiversity in the world. Kebun Cikabayan IPB as one of the research gardens managed by IPB University with an Integrated Farming System and is included in the type of community plantation because it has a garden area that tends to be smaller, less structured, and more heterogeneous in spatial structure and age, resulting in non-specific plantation patterns. This study aims to mitigate several major problems faced by the palm oil industry, one of which is the spread of diseases or pests by providing early detection and continuous monitoring of BSR diseases. Basal Stem Rot (BSR) is one of the disease threats that occur in oil palm caused by the fungus Ganoderma boinense as the main disease affecting oil palm plantations in Malaysia and Indonesia. In this study, oil palm status was monitored using remote sensing with early detection and BSR disease based on the infection rate model shown and the analysis of influencing aspects, namely plant age, plant generation, distance from the river, and regional slope. The level of infection by Ganoderma boinense in oil palm was detected by determining the training sample to model the infection rate of BSR disease and seeing the difference in spectral values calculated from the Normalized Difference Vegetation Index (NDVI) and Atmospherically Resistant Vegetation Index (ARVI) vegetation index using Sentinel 2A multispectral imagery. The results show that the ARVI index has better accuracy with an RMSE value of 0.557 compared to an NDVI of 0.6411 to detect the level of BSR disease infection and aspects that have a significant effect, namely plant age and regional slope, while plant generation and distance from the river do not show a significant effect. This is significant because the research area that produces plants is still small and only a small stream of water passes through."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library