Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 16 dokumen yang sesuai dengan query
cover
New York: IEEE Press, c1979
621.381 9 AUT
Buku Teks  Universitas Indonesia Library
cover
Li, Qia
"This book examines use of the voice as a biometric measure for personal authentication, offering an overview of advances in speaker authentication, and including useful algorithms and techniques for improving overall system robustness and performance."
Berlin: [Springer-Verlag, ], 2012
e20397868
eBooks  Universitas Indonesia Library
cover
Amalia Zahra
"Dengan adanya internet, media televisi, dan radio, data yang tersedia sangat banyak, termasuk data suara. Oleh karena itu, dibutuhkan suatu cara untuk mengorganisasikannya, yakni dengan mengubah data suara menjadi teks terlebih dahulu. Pengolahan selanjutnya cukup dilakukan terhadap teks. Proses konversi data suara menjadi teks inilah yang dikenal dengan sistem pengenalan suara (SPS) otomatis.
Saat ini, SPS untuk berbagai bahasa di dunia telah berkembang pesat, seperti Bahasa Inggris, Perancis, Jepang, Thai, dan lain-lain, sedangkan penelitian SPS untuk Bahasa Indonesia sudah dimulai, namun masih dalam tahap awal. Adanya kebutuhan akan SPS dan perkembangan SPS bahasa lain yang pesat memotivasi penulis untuk melakukan penelitian SPS untuk Bahasa Indonesia.
Fokus penelitian ini adalah pembuatan model akustik yang berkaitan erat dengan kamus fonetik yang digunakan. Oleh karena itu, penulis melakukan eksperimen menggunakan enam jenis kamus fonetik, yaitu IPA, SAMPA, ARPABET, Lestari [LEST06], Sakti [SAKT08], dan kamus yang dikembangkan oleh penulis (kamus Zahra). Eksperimen terbagi menjadi dua proses besar, yaitu pelatihan, dengan menggunakan 1.000 data suara rekaman telepon, dan pengujian terhadap 250 data suara rekaman telepon.
Hasil eksperimen menunjukkan bahwa akurasi SPS tertinggi diperoleh saat menggunakan kamus Zahra, yakni sebesar 73,5%. Dengan menggunakan kamus fonetik yang sama, pengujian terhadap 100 berkas rekaman berita RRI menghasilkan akurasi maksimum sebesar 71,6% dengan OOV (Out of Vocabulary) sebesar 8,92%. Kamus tersebut merupakan kamus fonetik yang paling tepat untuk mendefinisikan bunyi dalam Bahasa Indonesia, dengan total simbol yang digunakan adalah 33 simbol."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Siahaan, Edison Pardengganan
"Penelitian yang dilakukan pada tesis ini dimotivasi oleh adanya kebutuhan untuk dapat melakukan pengelolaan informasi pada dokumen suara khususnya berita berbahasa Indonesia. Informasi pada dokumen suara berita berbahasa Indonesia dapat diubah menjadi informasi berbentuk dokumen teks, dengan menggunakan perangkat lunak Automatic Speech Recognition (ASR). Pada penelitian ini perangkat ASR yang digunakan adalah perangkat ASR Sphinx 4.
Penggunaan perangkat Sphinx 4 ini didasari telah dilakukannya penelitian tentang transkripsi dokumen suara berbahasa Indonesia menggunakan perangkat ini. Hasil keluaran dari ASR berupa dokumen teks yang tidak memiliki batasan akhir dan tidak tersegmentasi secara jelas, tentu menyulitkan dalam pengolahan data teks tersebut. Dalam kerangka itu, maka penelitian yang dilakukan pada tesis ini ditujukan untuk mengetahui metode yang efektif dalam melakukan segmentasi hasil transkripsi berita suara berbahasa Indonesia. Metode yang akan diuji pada penelitian ini adalah metode TextTiling berbasis perbandingan blok dengan pembobotan TF-IDF-Mutual Information, TF-IDFMutual Information-Word Similarity, TF-IDF-Word Frequency, TF-IDF, Latent Semantic Analysis dan metode TextTiling berbasis Vocabulary Introduction. Segmentasi dilakukan untuk berita teks dan dokumen teks hasil transkripsi berita suara yang telahdikatagorikan menjadi 5 topik yaitu topik politik, sosial budaya, ekonomi, hukum dan olah raga. Hasil pengujian terhadap masing-masing teknik pembobotan menunjukkan bahwa metode segmentasi TextTiling dengan teknik pembobotan TF-IDF-Word Frequency merupakan metode segmentasi yang paling baik untuk dipakai dalam melakukan segmentasi hasil transkripsi dari perangkat pengenal suara (Automatic Speech Recognition). Pada penelitian ini telah dibuktikan bahwa teknik pembobotan TF-IDF-Word Frequency memiliki ketepatan segmentasi lebih tinggi baik pada dokumen teks hasil transkripsi (81,4%) ataupun pada dokumen berita teks (73,3%). Metode segmentasi yang dilakukan pada penelitian ini dapat terus dikembangkan menggunakan teknik-teknik lain dalam menunjang proses segmentasi hasil transkripsi berita berberbahasa Indonesia, seperti mempergunakan metode-metode optimalisasi dalam memperoleh urutan batas segmen yang optimal."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-804
UI - Tesis Membership  Universitas Indonesia Library
cover
Armando Yonathan
"Informasi yang terdapat saat ini tidak hanya terbatas disimpan dalam bentuk dokumen teks saja, tetapi banyak juga dalam bentuk dokumen suara. Banyaknya informasi yang disimpan dalam bentuk dokumen suara menyebabkan diperlukannya teknik perolehan informasi yang dapat diterapkan kepada koleksi dokumen tersebut. Pendekatan yang banyak dilakukan adalah dengan menggunakan hasil pengenalan suara oleh Sistem Pengenalan Suara Otomatis (SPSO). Tetapi, hasil pengenalan suara oleh SPSO tidak sepenuhnya benar sehingga menurunkan tingkat akurasi perolehan informasi dokumen suara. Pada penelitian ini penulis mencoba empat jenis hasil pengenalan suara untuk melakukan perolehan informasi dokumen suara, yaitu 1-best output, n-best word output, n-best pronounciation output, word posterior lattice. Selain itu, penulis juga mencoba tiga jenis kueri pada penelitian ini, yaitu kueri satu kata, kueri frase dua kata dan kueri kalimat. Hasil yang didapat pada penelitian ini menyimpulkan bahwa penggunaan 1-best output pada perolehan informasi dokumen suara menghasilkan kinerja yang lebih baik dibandingkan penggunaan hasil pengenalan suara yang lain. Mean Average Precision (MAP) hasil eksperimen dengan 1-best output lebih besar 0.64% dibandingkan penggunaan n-best output , 8,88% lebih besar dibandingkan penggunaan word posterior lattice dan lebih besar 92.68% dibandingkan penggunaan n-best pronounciation output. Pada eksperimen dengan kueri frase, sistem dengan akurasi terbaik adalah sistem yang menggunakan word posterior lattice. Pada eksperimen dengan kueri satu kata dan kueri kalimat, sistem yang menggunakan n-best word output menghasilkan kinerja terbaik.

The information today is not only limited in the form of text documents, but also in the form of spoken documents. The growing number of those spoken documents requires the information retrieval techniques to make the retrieval process easier. The approach for spoken documents retrieval is using automatic speech recognition (ASR). However, the results of the speech recognition by ASR are not entirely correct, so reduce the level of accuracy of information retrieval of spoken documents. This experiment uses four types results of the speech recognition by ASR, the 1-best output, n-best output, n-best pronunciation output, word posterior lattice. In addition, this experiment also investigates the effect of the use of query types (phrase, single word and sentence). Results obtained from this experiment concluded that the use of 1-best output on spoken document retrieval produces better performance results than the use of other results of the speech recognition. Mean Average Precision (MAP) results of experiments with 1-best output is 0.64% higher than the use of n-best output, 8.88% higher than the use of word posterior lattice and 92.68% higher than the use of n-best pronunciation output. In phrase based query experiment, the best accuracy is word posterior lattice while the best accuracy in single word query and sentence query is n-best word output."
Depok: Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Kondo, Kazuhiro
"This practical hands-on book shows speech intelligibility measurement methods so that the readers can start measuring or estimating speech intelligibility of their own system. The book also introduces subjective and objective speech quality measures, and describes in detail speech intelligibility measurement methods. It introduces a diagnostic rhyme test which uses rhyming word-pairs, and includes : an investigation into the effect of word familiarity on speech intelligibility. Speech intelligibility measurement of localized speech in virtual 3-D acoustic space using the rhyme test. Estimation of speech intelligibility using objective measures, including the ITU standard PESQ measures, and automatic speech recognizers."
Berlin: [, Springer], 2012
e20398888
eBooks  Universitas Indonesia Library
cover
Elmahdy, Mohamed
"Novel techniques for dialectal Arabic speech describes approaches to improve automatic speech recognition for dialectal Arabic. Since speech resources for dialectal Arabic speech recognition are very sparse, the authors describe how existing Modern Standard Arabic (MSA) speech data can be applied to dialectal Arabic speech recognition, while assuming that MSA is always a second language for all Arabic speakers. "
New York: [, Springer], 2012
e20418294
eBooks  Universitas Indonesia Library
cover
AbuZeina, Dia
"Cross-word modeling for Arabic speech recognition utilizes phonological rules in order to model the cross-word problem, a merging of adjacent words in speech caused by continuous speech, to enhance the performance of continuous speech recognition systems. The author aims to provide an understanding of the cross-word problem and how it can be avoided, specifically focusing on Arabic phonology using an HHM-based classifier."
New York: [, Springer], 2012
e20418404
eBooks  Universitas Indonesia Library
cover
Mary, Leena
"Extraction and representation of prosodic features for speech processing applications deals with prosody from speech processing point of view with topics including, the significance of prosody for speech processing applications, why prosody need to be incorporated in speech processing applications, and different methods for extraction and representation of prosody for applications such as speech synthesis, speaker recognition, language recognition and speech recognition."
New York: Springer, 2012
e20418411
eBooks  Universitas Indonesia Library
cover
Dib, Mohammed
"This book presents a contrastive linguistics study of Arabic and English for the dual purposes of improved language teaching and speech processing of Arabic via spectral analysis and neural networks. Contrastive linguistics is a field of linguistics which aims to compare the linguistic systems of two or more languages in order to ease the tasks of teaching, learning, and translation. The main focus of the present study is to treat the Arabic minimal syllable automatically to facilitate automatic speech processing in Arabic. It represents important reading for language learners and for linguists with an interest in Arabic and computational approaches."
Switzerland: Springer Nature, 2019
e20506958
eBooks  Universitas Indonesia Library
<<   1 2   >>