Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Wafiyulloh
"Serangan jaringan semakin beragam seiring berkembangnya internet. Dalam menghadapi
serangan-serangan tersebut, diperlukan juga pengembangan sistem keamanan internet
terhadap pengguna salah satunya adalah IDS. Intrusion detection system (IDS) merupakan
sistem keamanan dalam mengawasi aktivitas jaringan yang berbahaya bagi pengguna.
Metode yang umum digunakan yaitu signature-based IDS. Signature-based IDS
menggunakan daftar serangan siber yang diketahui dalam menentukan jaringan berbahaya
atau normal. Akan tetapi, IDS hanya mengetahui serangan yang diketahui saja dan
membutuhkan input secara manual untuk mengubah daftar serangan sehingga tidak efektif
dalam mengatasi serangan yang tidak ketahui. Oleh karena itu, penelitian ini berfokus pada
pengembangan IDS dengan pendekatan machine learning menggunakan model autoencoder
untuk reduksi dimensi dan pengaruhnya terhadap model IDS. Autoencoder yang digunakan
pada penelitian ini terdapat 2 model yaitu non-symmetric deep autoencoder (NDAE) dan
modifikasi dari NDAE menggunakan metode variational autoencoder (VAE) yang disebut
sebagai V-NDAE, serta model PCA. Modifikasi NDAE bertujuan untuk mengambil
informasi penting dengan menggunakan distribusi probabilistik sehingga menjadi data yang
berkualitas untuk pelatihan model IDS. Pengujian reduksi dimensi dari model-model ini
dilakukan dengan melatih model IDS yaitu model random forest. Penelitian ini dilakukan
pada 2 dataset yang berbeda yaitu dataset CICIDS2017 dan dataset dari simulasi serangan
jaringan. Metrik yang digunakan adalah metrik accuracy, precision, recall, F-1 score, ROC
curve. Berdasarkan pengujian yang telah dilakukan terhadap dataset CICIDS2017, model
NDAE memiliki nilai rata-rata akurasi validasi sebesar 90.85% sehingga memiliki nilai yang
lebih besar daripada model V-NDAE yang memiliki nilai rata-rata akurasi validasi sebesar
87.65%. Pelatihan model NDAE menggunakan hyperparameter yang paling optimal yaitu
dengan optimizer RMSProp dan batch size sebesar 128. Pada pengujian terhadap dataset
dari simulasi serangan jaringan, model NDAE memiliki performa yang lebih baik daripada
model V-NDAE dan model PCA. Model NDAE memiliki nilai rata-rata akurasi validasi
sebesar 94.66% dan model V-NDAE memiliki nilai rata-rata akurasi validasi sebesar
66.32%. Pelatihan model NDAE menggunakan hyperparameter yang paling optimal yaitu
dengan optimizer Adam dan batch size sebesar 32.

The variety of network attacks increases as the internet evolves. In dealing with these attacks,
the development of an internet security system for users is necessary, one of which is IDS.
An intrusion detection system (IDS) is a security system designed to monitor network
activity that is dangerous for users. The commonly used method is signature-based IDS.
Signature-based IDS uses a signature database of known cyber attacks to determine whether
a network is dangerous or normal. However, this IDS only recognizes known attacks and
requires manual input to change the signature database of attacks, making it ineffective in
dealing with unknown attacks. Therefore, this research focuses on developing an IDS using
a machine learning approach, specifically using an autoencoder model for dimensionality
reduction and its impact on the IDS model. The models used in this research consists of a
non-symmetric deep autoencoder (NDAE), modification of NDAE using the variational
autoencoder (VAE) method, and PCA model. The modified NDAE can capture important
information from the latent distribution, which helps stabilize the training of the model.
Dimensionality reduction testing for both models is performed by training an IDS model,
specifically a random forest model. This research is conducted on two different datasets: the
CICIDS2017 dataset and a dataset from network attack simulations. The evaluation metrics
used are accuracy, precision, recall, F-1 score, and ROC curve. Based on the testing
performed on the CICIDS2017 dataset, the NDAE model achieves an average validation
accuracy of 90.85%, which is higher than the average validation accuracy of 87.65% for the
V-NDAE model and PCA model. The NDAE model's training is done using the most optimal
hyperparameters, specifically the RMSProp optimizer and a batch size of 128. In the testing
on the dataset from network attack simulations, the NDAE model outperforms the V-NDAE
model and PCA model. The NDAE model achieves an average validation accuracy of
94.66%, while the V-NDAE model achieves an average validation accuracy of 66.32%. The
NDAE model's training is done using the most optimal hyperparameters, specifically the
Adam optimizer and a batch size of 32.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bima Tri Ariyanto
"Aktivitas anomali pada jaringan internet BMKG belum seluruhnya dapat dianalisis secara manual, sehingga beberapa sistem BMKG terdampak oleh aktivitas siber ini. Deteksi dan klasifikasi intrusi merupakan upaya penting yang dapat dilakukan BMKG dalam menangani serangan siber. Penelitian ini bertujuan untuk membuat model klasifikasi terbaik untuk mengklasifikasikan intrusi. Dataset yang digunakan adalah dataset CICIDS2017 dan data internet BMKG yang kemudian dilakukan penanganan data tidak seimbang menggunakan SMOTE. Untuk meningkatkan performa klasifikasi, dilakukan seleksi fitur dan diusulkan tiga variasi jumlah fitur, yaitu 7 fitur, 18 fitur, dan 82 atau keseluruhan fitur. Klasifikasi yang dilakukan mencakup klasifikasi biner untuk membedakan serangan dan normal, serta multikelas untuk mengklasifikasikan beberapa jenis serangan. Algoritma klasifikasi yang digunakan dalam penelitian ini adalah KNearest Neighbor (KNN), Decision Tree (DT), dan Random Forest (RF). Hasil model klasifikasi terbaik untuk kelas biner adalah DT dengan 82 atau keseluruhan fitur dengan akurasi 99,1%. Sedangkan model terbaik untuk multikelas adalah DT dengan 82 atau keseluruhan fitur dengan akurasi 99,2%. Penelitian ini menunjukkan bahwa model klasifikasi berbasis pembelajaran mesin dapat meningkatkan deteksi dan klasifikasi serangan siber dengan akurasi tinggi. BMKG dapat mengimplementasikan model ini untuk deteksi otomatis dan respons cepat terhadap ancaman, melakukan uji coba lapangan, memberikan pelatihan staf, dan memastikan pemeliharaan serta pemantauan rutin model. Langkah-langkah ini dapat membantu BMKG dalam meningkatkan keamanan jaringan dan melindungi data serta layanan dari serangan siber di masa mendatang.

Anomalous activity on the BMKG's internet network cannot be fully analyzed manually, so several BMKG systems have been affected by this cyber activity. Intrusion detection and classification is an important effort that can be made by BMKG in dealing with cyber attacks. This research aims to create the best classification model to classify intrusions. The datasets used are the CICIDS2017 dataset and BMKG internet data, which are then handled with unbalanced data using SMOTE. To improve classification performance, feature selection is performed, and three variations in the number of features are proposed, namely 7 features, 18 features, and 82 or all features. The classification includes binary classification to distinguish between normal and attack and multiclass classification to classify multiple types of attacks. The classification algorithms used in this research are K-Nearest Neighbor (KNN), Decision Tree (DT), and Random Forest (RF). The best classification model for binary classes is DT with 82 or all features with 99.1% accuracy. While the best model for multiclass is DT with 82 or all features with 99.2% accuracy. This research shows that a machine learning-based classification model can improve cyberattack detection and classification with high accuracy. BMKG can implement this model for automated detection and rapid response to threats, conduct field trials, provide staff training, and ensure regular model maintenance and monitoring. These steps can help BMKG improve network security and protect data and services from future cyberattacks."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library