Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Dhita Putri Pratama
"COVID-19 telah merenggut nyawa banyak manusia. Tercatat per tanggal 29 Juni 2021, sudah terdapat sekitar 3,923,238 pasien yang meninggal dunia akibat penyakit dengan tingkat penularan yang tinggi ini. Dengan semakin banyaknya orang yang terinfeksi COVID-19, persediaan alat untuk mendeteksi penyakit ini pun juga semakin terbatas yang dapat menyebabkan pandemi COVID-19 pun menjadi semakin tidak terkendali. Oleh karena itu, penting untuk mempertimbangkan metode deteksi COVID-19 lainnya yang dapat membantu para staf kesehatan untuk melakukan deteksi pasien positif COVID-19.
Metode deteksi COVID-19 lainnya yang bisa dipertimbangkan untuk dikembangkan adalah metode deteksi COVID-19 dengan artificial intelligence. Dengan metode tersebut, data-data seperti data gejala pasien, data citra toraks, serta data interpretasi citra berupa teks dapat dimanfaatkan untuk mengembangkan suatu model prediksi COVID- 19. Ketiga tipe data yang berbeda tersebut dapat dikombinasikan sebagai data input untuk membangun suatu model klasifikasi COVID-19. Pengkombinasian data yang berbeda dapat dilakukan dengan cara melakukan konkatenasi pada tiap input layer yang menerima data gejala dan data teks dengan suatu layer dari arsitektur CNN. Beberapa arsitektur CNN yang dapat digunakan pada penelitian ini adalah ResNet, DenseNet, Inception- ResNet, DarkCovidNet, CoroNet, dan COVID-Net. Selain itu, metode Grad-CAM juga dipilih untuk proses deteksi persebaran coronavirus.
Hasil pengujian menunjukkan bahwa banyak model yang dihasilkan dari pendekatan kombinasi data gambar, data tabular, dan data teks memiliki nilai sensitivitas, akurasi, serta f1-score yang tinggi. Hal tersebut menunjukkan bahwa pendekatan tersebut secara umum menghasilkan model-model dengan performa yang tinggi juga seimbang. Namun, berdasarkan hasil pengujian pula, diketahui bahwa model yang memiliki performa tertinggi dicapai oleh model dari pendekatan klasifikasi gambar dengan data tabular yang menggunakan arsitektur DenseNet khususnya dengan nilai learning rate = 10−3. Model tersebut tercatat memiliki performa yang tinggi dan seimbang dengan nilai sensitivitasnya mencapai angka 1,00, akurasi mencapai angka 0,94, dan F1-Score mencapai angka 0,94.

COVID-19 has taken the lives of many people. As of June 29th 2021, there were approximately 3.923.238 deaths due to this highly contagious disease. With the increasing number of infected people, the COVID-19 detection tool supplies are also getting limited that can lead to an out-of-control situation. Therefore, it is quite necessary to consider alternative methods for COVID-19 detection.
Another COVID-19 detection that can be considered to be developed is a COVID- 19 detection method with artificial intelligence. With artificial intelligence, a COVID-19 prediction model can be built by using any available data such as patient symptom dataset, patient thorax images especially chest X-Ray, and thorax interpretations in text form. Those three types of data can be utilized and combined as data input to build a COVID-19 detection system. The combination of those three different types of data can be done with the concatenation of each input layer of tabular and text data with a layer from a CNN architecture. In this study, there are six CNN architectures used and those are ResNet, DenseNet, Inception-ResNet, DarkCovidNet, CoroNet, and COVID-Net. Besides, the Grad-CAM technique is also implemented for coronavirus detection purposes.
The result shows that most of the models from the combined image, tabular, and text datasets offer high sensitivities, accuracies, and scores of F1-Score. It means that the combined image, tabular, and text datasets generally obtained high performance and balanced models. However, according to the test results, the best performance model is achieved by the combined image and tabular datasets approach with DenseNet architecture and the learning rate of 10−3. Such a model achieves the best performance model with an accuracy score of 0.94, a sensitivity score of 1.00, and an f1-score of 0.94.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mufarrido Husnah
"Coronavirus (CoV) adalah keluarga virus penyebab penyakit sistem pernapasan ringan hingga berat pada berbagai spesies hewan termasuk manusia. Salah satu spesies Coronavirus yang muncul pada akhir tahun 2019 yaitu SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) dan menimbulkan penyakit baru bernama Covid-19 (Coronavirus disease-2019) kemudian berstatus pandemi. Penyebaran Covid-19 yang cepat dan dengan tingkat kematian yang tinggi terus terjadi di berbagai negara. Oleh karena itu, deteksi dini patogen perlu dilakukan secara cepat dengan menggunakan data sekuens protein Coronavirus. Sekuens protein merupakan data struktur primer dari suatu protein yang memiliki 27 fitur berdasarkan discere. Dalam penerapannya, tidak semua fitur relevan dengan data yang digunakan sehingga perlu seleksi fitur untuk menghindari dimensi data yang tinggi dan tidak optimal. Seleksi fitur algoritma genetika memberikan fitur-fitur optimal pada data dan metode K-Nearest Neighbor (KNN) melakukan klasifikasi data sekuens protein Coronavirus dengan fitur hasil seleksi fitur algoritma genetika. Seleksi fitur algoritma genetika menghasilkan 11 fitur optimal yang meningkatkan performa running time metode klasifikasi KNN menjadi 0,0541 detik. Fitur optimal diperoleh dari karakteristik AA-count , secondary structure fraction , isoelectric point dan instability index. Hasil terbaik performa akurasi, spesifisitas beserta sensitifitas secara berurutan yaitu 96,68%, 98,7% dan 94,4% yang diperoleh pada nilai parameter K=3.

Coronaviruses (CoV) are a family of viruses that cause mild to severe respiratory system diseases in various animal species including humans. One of the Coronavirus species that emerged at the end of 2019 was SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and caused a new disease called Covid-19 (Coronavirus disease-2019) then had a pandemic status. The rapid spread of Covid-19 and with a high death rate continues to occur in most of countries. Therefore, early detection of pathogens needs to be done quickly using Coronavirus protein sequence data. Protein sequences are primary structural data of a protein that has 27 features but not all of the existing features are relevant to the data used, so feature selection is necessary to avoid high and suboptimal data dimensions. The genetic algorithm feature selection provides optimal features to the data and the K-Nearest Neighbor (KNN) method performs the classification of Coronavirus protein sequences data with features resulting from the genetic algorithm feature selection. The genetic algorithm feature selection produces 11 optimal features that improve the running time performance of the KNN classification method. The average result of running time is 0.0541 second. The best results were accuracy performance, specificity and sensitivity are 96.68%, 98.7% and 94.4% respectively which were obtained at the parameter value K=3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library