Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Rofi Nouval Maulana
"Penelitian ini mengkaji penggunaan model Jaringan Saraf Tiruan (Artificial Neural Networks - ANN) untuk memprediksi temperatur awal transformasi martensit (Ms) pada paduan Cu-Al-Mn. Model ANN yang terdiri dari satu lapisan input, dua lapisan tersembunyi, dan satu lapisan output ini menggunakan metode gradient descent digunakan dalam proses pelatihan secara iteratif. Dengan memanfaatkan data dari Shape Memory Materials Database yang disediakan oleh NASA GRC secara open access, studi ini mengembangkan model regresi linear yang memprediksi suhu transformasi martensit awal (Ms) pada paduan Cu-Al-Mn. Evaluasi efektivitas dan akurasi model dilakukan dengan menggunakan dua paduan, yaitu paduan Cu- 24,12Al-3,13Mn (% atomik) dan Cu-25,92Al-3,6Mn (% atomik), dimana temperatur transformasi martensit awal (Ms) dari kedua paduan ini telah diperoleh. Secara khusus, studi ini menghasilkan sebuah persamaan yang bisa digunakan untuk memprediksi Ms. Persamaan yang diperoleh dari hasil pelatihan model ANN dengan validasi menggunakan data paduan yang spesifik, telah menunjukkan kemampuannya dalam mengkorelasikan variabel yang relevan dengan hasil yang diinginkan namun dengan beberapa limitasi.

This study examined the use of an Artificial Neural Network (ANN) model to predict the Martensite Start (Ms) transition temperatures in Cu-Al-Mn alloys. The ANN model which consisted of an input layer, two hidden layers, and an output layer, utilized the gradient descent method for iterative training processes. Utilizing data from the Shape Memory Materials Database provided by NASA GRC with open access, this study developed a linear regression model that predicts the starting temperature of martensitic transformation (Ms) in Cu-Al-Mn alloys. The effectiveness and accuracy of the model were evaluated using two alloys, namely the Cu-24.12Al-3.13Mn (at. %) and Cu-25.92Al-3.6Mn (at. %) alloys, from which the Martensite Start (Ms) transition temperature were obtained. Specifically, this study produced a linear regression equation that can be used to predict Ms. The equation, derived from the ANN model training results with validation using specific alloy data, has demonstrated its capability to correlate relevant variables with the desired outputs under various limitations."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gusaimas Matahachiro Hanggoro Himawan Akbar
"Paduan ingat bentuk Cu-Al-Mn merupakan material cerdas menjanjikan yang murah biaya; namun, kinerja dan suhu transformasinya sangat sensitif terhadap komposisi paduan. Dalam penelitian ini, pembelajaran mesin Extreme Gradient Boosting (XGBoost) diterapkan untuk memodelkan suhu martensite start (Ms) paduan Cu-Al-Mn. Paduan Cu-26,24Al-7,77Mn (at. %) digunakan untuk memvalidasi model dan menyelidiki pengaruh perlakuan panas terhadap struktur mikro dan sifat memori bentuk. Paduan tersebut dibuat dengan pengecoran gravitasi, dihomogenisasi pada suhu 900 ºC selama 2 jam, dibetatisasi pada suhu 900 ºC selama 30 menit, dan kemudian didinginkan menggunakan metode pencelupan langsung (DQ) dan pencelupan naik (UQ). Model XGBoost yang dikembangkan menghasilkan nilai R2, MAE, RMSE sebesar 0,98, 4,82, dan 10,67, memprediksikan Ms sebesar -174 ºC—mendekati suhu aktual (-190 ºC) yang diperoleh melalui pengujian resistivitas listrik. Hasil pengamatan mikroskop optik dan elektron bersama dengan analisis difraksi x-ray menunjukkan struktur fasa ganda β(L21) + γ dalam sampel as-cast dan setelah homogenisasi sedangkan fasa β(L21) tunggal diamati pada sampel perlakuan DQ dan UQ. Proses perlakuan panas mengakibatkan pertumbuhan butir dan penurunan nilai kekerasan mikrovickers, sesuai dengan persamaan Hell-Petch. Ditemukan bahan pengotor Fe (0,43 at. %) menyebabkan pertumbuhan butir abnormal pada sampel yang diberi perlakuan panas, di mana satu butir abnormal mencapai ukuran hingga ~15 mm. Sampel DQ dan UQ masing-masing mencapai pemulihan regangan 92,1 dan 100%. Perlakuan UQ diperkirakan mengurangi jumlah vakansi yang terperangkap akibat pencelupan dan derajat pinning pada antarmuka martensit.

Cu-Al-Mn shape memory alloys show great promise as low-cost smart materials; however, their performance and transformation temperatures are sensitive towards alloy composition. In this study, Extreme Gradient Boosting (XGBoost) machine learning was applied to model the martensite start (Ms) temperature of Cu-Al-Mn alloys. Cu-26.24Al-7.77Mn (at. %) alloy was used to validate the model and investigate the influence of heat treatment on microstructure and shape memory properties. The alloy was gravity cast, homogenized at 900 ºC for 2 hours, betatized at 900 ºC for 30 minutes, and quenched using direct quenching (DQ) and up-quenching (UQ) methods. The refined XGBoost model delivered R2, MAE, RMSE scores of 0.98, 4.82, and 10.67, predicting an Ms of -174 ºC— close to the actual - 190 ºC obtained by electrical resistivity measurements. Optical and electron microscopy along with X-ray diffraction analyses revealed a dual-phase β(L21) + γ structure in as-cast and as-homogenized samples while a single β(L21)-phase in DQ and UQ treated samples. The heat treatment process resulted in grain growth of the alloy which also reduced Vickers microhardness values, consistent with the Hell-Petch relation. Notably, Fe (0.43 wt. %) impurity induced abnormal grain growth in heat-treated samples, with an abnormal grain reaching up to ~15 mm. DQ and UQ samples achieved 92.1 and 100% strain recovery, respectively. UQ treatment was thought to reduce the number of quenched-in vacancies and the degree of pinning on the martensite interface."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library