Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15 dokumen yang sesuai dengan query
cover
Dian Maharani
Abstrak :
Jika biaya kerugian yang disebabkan peristiwa kebakaran dapat diprediksi dengan big-structured data mengenai faktor-faktor penyebab kebakaran yang sudah ada maka penentuan polis asuransi kebakaran di perusahaan asuransi menjadi lebih efektif dan efisien. Pada tesis ini, model Deep Neural Network (DNN) digunakan untuk memprediksi biaya kerugian akibat kebakaran untuk polis asuransi, kemudian membandingkan akurasi model DNN dan NN. Dari hasil penelitian didapatkan bahwa akurasi (MSE) model DNN optimal sebesar 0,04217331959 ±0,63924424e-15, sedangkan akurasi (MSE) model NN yang optimal sebesar 0,04217335183±  0,64079999e-15. Hal tersebut menunjukan bahwa model DNN sebanding dengan model NN dalam memprediksi biaya kerugian pada asuransi kebakaran dengan data yang digunakan merupakan big-structured data. Selain itu, running time program untuk model NN lebih cepat dibandingkan dengan model DNN.
If the loss costs caused by fire events can be predicted with big structured data regarding the factors that cause the fires that already exist, determining fire insurance policies in the insurance companies can be more effective and efficient. In this study, the Deep Neural Network (DNN) model is used to predict the loss cost due to fire for insurance policies, then compare the accuracy of the DNN and NN models. The results showed that the accuracy (MSE) of the optimal DNN model was 0.04217331959 ± 0.63924424e-15. While the optimal NN model was 0.04217335183 ± 0.64079999e-15. This shows that the DNN model is comparable with the NN model in predicting the loss cost in fire insurance with the data used being big structured data. In addition, the running time of the program for the NN model is faster than the DNN model.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53940
UI - Tesis Membership  Universitas Indonesia Library
cover
Fajar Budi Utomo
Abstrak :
Kekuatan suatu struktur tidak hanya dipengaruhi oleh faktor usia tetapi juga pengaruh dari gaya eksternal yang dapat mempengaruhi kekuatan suatu bangunan. Getaran gempa dapat menyebabkan kegagalan bangunan struktur yang sangat berbahaya jika kerusakan pada struktur dapat menyebabkan bangunan runtuh dan menimbulkan korban jiwa. Pada penelitian ini dibuat sistem yang dapat mengevaluasi gedung berbasis getaran untuk mendeteksi respon struktural melalui parameter dinamis yang diambil dari pengukuran akselerasi. Selanjutnya penggunaan metode berbasis Deep Neural Network digunakan sebagai prediksi informasi apabila informasi dari data mentah tidak tersedia ataupun mengalami anomali. Menggunakan studi kasus gempabumi Sumur, analisis respon dinamis berupa rasio amplifikasi menunjukkan perbesaran hingga 7.2 kali, analisis floor spectra ratio menunjukkan frekuensi alami gedung sebesar 0.75 Hz dan analisis perubahan frekuensi natural gedung tidak menunjukkan adanya perubahan frekuensi alami gedung setelah gempa yaitu sebesar 0.84 Hz setelah terjadinya gempabumi tersebut. Penggunaan Deep Neural Network untuk prediksi respon struktur menunjukkan nilai performa MAE ; 0,00091, RMSE : 0,00150 dan MAPE :0,51048. Penggunaan machine learning ini juga dapat memberikan informasi respon struktur bangunan ketika sensor mengalami malfungsi pada kejadian gempa tersebut. ......The strength of a structure is not only influenced by the age factor but also the influence of external forces that can affect the strength of a building. Earthquake vibrations can cause structural failure which is very dangerous if damage to the structure cause the building to collapse and cause casualties. In this research, a system that can evaluate buildings based on vibration is created to detect structural responses through dynamic parameters taken from acceleration measurements. Furthermore, the use of Deep Neural Network-based methods is used as information prediction if information from raw data is not available or experiences anomaly. Using the Sumur earthquake case study, the dynamic response analysis in the form of amplification ratios shows a magnification of up to 7.2 times, floor spectra ratio analysis shows the natural frequency of the building at 0.75 Hz and the analysis of changes in the natural frequency of the building does not show any change in the natural frequency of the building after the earthquake, which is 0.84 Hz after the earthquake. the earthquake. The use of Deep Neural Network for predicting structural response shows the value of MAE performance; 0.00091, RMSE : 0.00150 and MAPE : 0.51048. The use of machine learning can also provide information on the response of the building structure when the sensor malfunctions in the earthquake event.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kivlan Rafly Bahmid
Abstrak :
Salah satu aspek pertahanan negara yang cukup penting adalah pertahanan udara negara. Sayangnya, Industri Pertahanan Indonesia masih cukup kurang mendukung. Salah satu isu yang diakibatkan oleh masalah ini adalah kurang berkembangnya teknologi pertahanan udara di Indonesia dibanding dengan negara-negara lain, seperti teknologi pengendalian pesawat, seperti Unmanned Aerial Vehicle (UAV). Oleh karena ini, diperlukan pengembangan teknologi pengendalian pesawat yang mandiri dan bersetara dengan pihak luar negeri. Dinamika penerbangan merupakan masalah yang bersifat non-linear, time-varying, memiliki coupling, dan terefek oleh gangguan eksternal. Untuk memecahkan masalah ini, diperlukan pengendali pesawat berbasis metode Direct Inverse Control. Direct Inverse Control memerlukan sistem identifikasi dari sistem yang ingin dikendalikan agar dapat mengembangkan neural network inverse. Pada penelitian ini, diajukan sistem identifikasi pesawat Cessna-172P berbasis Deep Neural Network dan Recurrent Neural Network. Kinerja kedua sistem identifikasi sudah cukup dalam mereplikasikan dinamika penerbangan pesawat Cessna-172P. Dari analisis kinerja kedua sistem identifikasi, sistem identifikasi berbasis recurrent neural network menghasilkan kesahalan prediksi yang lebih rendah, tetapi menggunakan daya dan waktu komputasi yang lebih banyak. ......One important aspect of national defense is the country's air defense. Unfortunately, the Indonesian Defense Industry still lacks sufficient support. One issue resulting from this problem is the underdevelopment of air defense technology in Indonesia compared to other countries, such as aircraft control technology like Unmanned Aerial Vehicles (UAV). Therefore, the development of independent aircraft control technology that is on par with foreign counterparts is needed. Flight dynamics pose nonlinear, time-varying challenges with coupling and are affected by external disturbances. To address this problem, an aircraft controller based on the Direct Inverse Control method is required. Direct Inverse Control necessitates system identification of the desired controlled system to develop an inverse neural network. In this study, a Deep Neural Network and Recurrent Neural Network-based identification system for the Cessna-172P aircraft is proposed. Both identification systems perform well in replicating the flight dynamics of the Cessna-172P aircraft. From the performance analysis of both identification systems, the recurrent neural network-based identification system produces lower prediction errors but requires more computational power and time.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richie Ghifari
Abstrak :
Rancang campur beton merupakan proses bertahap dan kompleks untuk mencoba menemukan komposisi bahan terbaik guna menghasilkan beton dengan performa terbaik. Kuat tekan beton merupakan sifat terpenting dalam kualitas beton dibandingkan sifat-sifat lain. Dalam proses pembuatannya, banyak variabel terutama jumlah komposisi material penyusun yang dapat memengaruhi kuat tekan beton. Terdapat beberapa metode konvensional dalam memprediksi beton yang terkadang memberikan hasil prediksi lebih atau kurang dari kuat tekan yang ditargetkan. Diperlukan metode yang akurat dalam memprediksi kuat tekan beton agar dapat memberikan keuntungan secara signifikan terhadap penggunaan bahan. Oleh karena itu, penelitian ini menggunakan Deep Neural Network (DNN) sebagai subbidang dari Machine Learning (ML) dan Artificial Intelligence (AI), untuk memprediksi kuat tekan beton berdasarkan komposisi campuran dan properti materialnya. Penelitian ini menghasilkan formula matematika berupa persamaan yang dihasilkan dari model DNN terbaik dengan melihat aspek error model dan grafik model loss. Terdapat total 2048 model yang dianalisis dengan variasi jumlah variabel input (feature) yang berbeda-beda. Model 280 pada kasus 1 dan model 23 pada kasus 5 merupakan model terbaik yang dihasilkan penelitian ini, dengan masing-masing nilai error model 43,8028 dan 5778,5850 untuk Mean Squared Error (MSE) serta 5,0073 dan 59,8225 Maen Absolute Error (MAE). ...... Concrete mix design is a gradual and complex process of trying to find the best ingredient composition to produce the best performing concrete. The compressive strength of concrete is the most important property in concrete quality compared to other properties. In the manufacturing process, many variables, especially the amount of material composition, can affect the compressive strength of concrete. There are several conventional methods of predicting concrete that sometimes give predictive results more or less than the targeted compressive strength. An accurate method of predicting the compressive strength of concrete is needed in order to significantly benefit the use of materials. Therefore, this research utilizes Deep Neural Network (DNN), a subfield of Machine Learning (ML) and Artificial Intelligence (AI), to predict the compressive strength of concrete based on its mix composition and material properties. This research produces mathematical formulas in the form of equations generated from the best DNN model by looking at the aspects of model error and model loss graphs. There are a total of 2048 models analyzed with different variations in the number of input variables (features). Model 280 in case 1 and model 23 in case 5 are the best models produced by this study, with model error values of 43.8028 and 5778.5850 for Mean Squared Error (MSE) and 5.0073 and 59.8225 Maen Absolute Error (MAE), respectively.
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aqila Dzikra Ayu
Abstrak :
Pertahanan negara penting untuk menjaga negara dari ancaman dan gangguan yang ada. Namun, industri pertahanan yang untuk mendukung pertahanan negara masih kurang optimal, seperti kebutuhan misil yang belum bisa disediakan oleh industri pertahanan. Ketersediaan misil sangat terbatas karena bergantung pada politik dari negara yang membuatnya. Diperlukan solusi yang memungkinkan negara untuk mengembangkan misil secara mandiri tanpa melibatkan pihak luar negeri. Misil adalah suatu sistem dinamik yang bersifat non-linear, time-varying, multivariabel, dapat memiliki coupling, dan rentan gangguan ketika digunakan. Oleh karena itu, dibutuhkan pengendali yang dapat mengendalikan sistem misil yang rumit. Pada penelitian ini, diusulkan pengendali misil berbasis long-short term memory (LSTM) karena arsitekturnya yang cocok untuk data sekuensial seperti data pengendali. Pengendali misil berbasis LSTM menghasilkan hasil prediksi yang dapat mengikuti data asli dengan MSE rendah. Kinerja pengendali berbasis LSTM lalu dibandingkan dengan pengendali misil berbasis deep neural network. Hasil penelitian menunjukkan bahwa pengendali berbasis LSTM menghasilkan MSE pelatihan dan pengujian yang lebih rendah dari pengendali misil berbasis deep neural network. ......National defense is essential to protect the country from existing threats and disturbances. However, the defense industry is still not optimal to support national defense, such as the need for missiles that the industry cannot provide. The availability of missiles is limited due to the politics of the country who made them. A solution is needed to allow our country to develop missiles independently without involving foreign parties. The missile is a dynamic system that is non-linear, time-varying, multivariable, coupled, and susceptible to interference when operated. Therefore, a controller is needed to control the complex missile system. This research proposes a long-short term memory (LSTM)-based missile controller because its architecture is suitable for sequential data, such as controller data. The LSTM-based missile controller produces results that can follow the original data with low MSE. The performance of the LSTM-based missile controller is then compared with the deep neural network-based missile controller. The results showed that the LSTM-based missile controller resulted in lower training and testing MSE than the deep neural network-based missile controller.
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zamroji Hariyanto
Abstrak :
Teknologi dalam kehidupan manusia telah berkembang pesat dan membawa banyak kenyamanan bagi orang-orang dalam berbagai aspek di kehidupan mereka. Selain itu, perkembangan teknologi membawa dampak berbahaya bagi lingkungan, terutama pada kualitas udara. Karena proses produksi di industri, jumlah konsentrasi polutan meningkat dengan cepat. Particulate matter halus (PM2.5) merupakan salah satu polutan berbahaya dan dianggap sebagai salah satu faktor utama penurunan kesehatan masyarakat. Banyak upaya yang sedang dilakukan untuk menyediakan pemantauan konsentrasi PM2.5. Peramalan PM2.5 disediakan untuk peringatan dini bagi orang-orang. Dalam hal peramalan, tingkat akurasi merupakan hal yang paling menantang. Model yang tepat perlu dibangun untuk memperroleh prediksi yang presisi. Saat ini, Deep Neural Network (DNN) adalah teknik kecerdasan buatan telah terbukti menyelesaikan beberapa permasalahan terkait prediksi. Oleh karena itu, tesis ini mengusulkan mekanisme optimisasi peramalan menggunakan kombinasi dari Golden Section Search dan Fruit Fly Optimization Algorithm dengan mekanisme pembersihan data (data cleaning) menggunakan model DNN. Mekanisme yang diusulkan terbukti secara efektif mengoptimalkan tiga model DNN yaitu Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) dan Gated Recurrent Unit (GRU) untuk mencapai akurasi perkiraan konsentrasi PM2.5 yang lebih baik
Technology in human life has advanced tremendously and it brings a lot of convenient for people in various aspects of their life. Besides that, it also brings a harmful impact on the environment, especially on air quality. Due to industrial production, the quantity of pollutant concentration raises rapidly many times. Fine particulate matter (PM2.5), one of dangerous pollutant, is regarded as one of the main factors for the deterioration of public health. Many efforts were being created to provide the monitoring of PM2.5 concentrations. PM2.5 forecasting provided for early warning to people. In terms of forecasting, accuracy is the most challenging task. A proper model needs to be constructed to lead the precision prediction. Nowadays, Deep Neural Network (DNN) is an artificial intelligence technique that has proven to solve several prediction problems. Therefore, this thesis proposed the forecasting optimization mechanism employing the Golden Section Search and Fruit Fly Optimization Algorithm combines with a data cleansing mechanism using DNN models. The proposed mechanism effectively optimizes three DNN models that are Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) to achieve better forecasting accuracy of PM2.5 concentration
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Esti Merindasari
Abstrak :

Pengenalan emosi dasar melalui ekspresi wajah menjadi domain penelitian yang berkembang saat ini. Berbagai metode machine learning telah digunakan untuk permasalahan ini. Dewasa ini, metode deep learning terbukti lebih robust untuk penyelesaian domain pengenalan emosi dasar. Salah satu metode deep learning yang dapat digunakan adalah deep belief network-deep neural network (DBN). Metode ini sebelumnya berhasil diujikan untuk pengenalan citra CIFAR-10 dan MNIST, namun masih belum digunakan untuk dataset citra emosi wajah. Oleh karena itu, pada penelitian ini, kami menggunakan DBN-DNN untuk pengenalan emosi dasar. DBN-DNN diujikan dengan 2 (dua) skema eksperimen yakni DBN-DNN dimensi penuh dimensi tereduksi. Hasil dari kedua skema menunjukkan bahwa DBN-DNN berhasil diujikan pada dataset citra wajah MUG, CK+, dan IMED untuk pengenalan 7 (tujuh) kelas emosi dasar yaitu marah, jijik, takut, senang, netral, sedih, dan terkejut. Skema DBN- DNN dimensi penuh, berhasil mendapatkan akurasi pengenalan emosi dasar pada citra wajah dataset MUG sebesar 94.07%, dengan waktu komputasi yang cukup lama yakni 7 jam 13 menit. Berbeda halnya dengan pengenalan DBN- DNN dimensi penuh pada citra wajah dataset CK+ dan MUG, meskipun waktu yang dibutuhkan saat pengenalan cukup singkat yakni 11 menit untuk  CK+ dan 7 menit untuk IMED, akurasi yang didapatkan masih cukup kecil yakni 40.64% untuk CK+ dan 44.43% untuk IMED. Kecilnya akurasi pengenalan CK+ dan IMED, dipengaruhi oleh jumlah data yang kurang banyak, berbeda dengan MUG yang mencapai 9805 data. Sehingga, DBN-DNN kurang optimal dalam melakukan proses pembelajaran pada kedua dataset tersebut, CK+ dan IMED. Sedangkan, pada skema DBN-DNN dimensi tereduksi, akurasi berhasil meningkat baik untuk pengenalan pada dataset MUG, CK+ dan IMED. Akurasi pengenalan pada MUG mencapai 94.75%, CK+ 52.84%, dan IMED 56.58%. Waktu komputasi yang diperlukan dalam pengenalan pun juga lebih efisien khususnya pada dataset MUG, menjadi 3 jam 45 menit termasuk proses reduksi dimensi SVD di dalamnya. Hal ini berbeda untuk dua dataset lain, CK+ dan IMED, keduanya membutuhkan waktu cukup lama untuk proses reduksi dimensi karena SVD menggunakan jumlah dimensi 16384 untuk mendekomposisi matriks. Namun, jika waktu yang digunakan untuk proses DBN-DNN nya saja relatif lebih singkat dari DBN-DNN dimensi penuh, yakni 2 menit untuk CK+ dan 1 menit untuk IMED.

 


Facial emotion recognition using facial expression has been popular in these past years. There are many machine learning methods used for recognition tasks.  Currently, the most robust method for this domain is deep learning. One type of deep learning method that can be used is the deep belief network – deep neural network (DBN-DNN). Although DBN-DNN has been used for recognizing CIFAR-10 and MNIST datasets, it has not yet been used for facial emotion recognition. Hence, in this research, we attempt to use the DBN-DNN for recognizing facial emotions. This research consists of two experimental schemes, DBN-DNN with full dimension and DBN-DNN with the reduced dimension. The result of these experiments shows that using the MUG facial emotion dataset, DBN-DNN has successfully recognized 7 (seven) classes of basic emotions, angry, disgust, fear, happy, neutral, sadness, and surprise. DBN- DNN with full dimension has successfully reached 94.07% accuracy for recognizing 7 ( seven) basic emotions from the MUG dataset, even the run time needed is not efficient, 7 hours and 13 minutes. Meanwhile, the CK+ dan IMED dataset is not quite good at accuracy, even the run time is quite short, 11 minutes for CK+ dataset and 7 minutes for the IMED dataset. The accuracy for the CK+ dataset reaches 40,64% and 44.43% for the IMED dataset. This accuracy occurs because of the lack number of data that is processed by DBN-DNN. DBN-DNN is good at a lot of the number of data, like MUG with 9805 data. On the other hand, DBN-DNN with reduced dimension has successfully reached higher accuracy for MUG (94.75%), CK+ (52.84%) and IMED (56.58%) The run time also more efficient, especially on MUG Dataset (3 hours and 45 minutes). But, CK+ and IMED need a longer time for finishing the dimensionality reduction with SVD. Its because the number of dimensions processed by SVD uses a full dimension of the matrix, 16384. Hence, it needs more time to run the SVD. But, the time need for processing DBN-DNN after finishing the SVD, only need 2 minutes for CK+ dataset and 1 minute for IMED dataset.

 

T54428
UI - Tesis Membership  Universitas Indonesia Library
cover
Haris Hamzah
Abstrak :
Diabetes mellitus tipe-2 (T2DM) merupakan penyakit metabolisme kronis yang sering diderita oleh orang dewasa. T2DM ditandai dengan menurunnya insulin dalam tubuh. Enzim dipeptidil peptidase-4 (DPP-4) dapat mengkatalisasi penurunan hormon peptida inkretin, terutama peptide-1 seperti hormon gastric inhibitory peptide (GIP) dan glucagon-like peptide-1 (GLP-1), yang mengakibatkan penurunan sintesis insulin. Inhibitor DPP-4 adalah target obat yang menjanjikan untuk T2DM, karena dapat memblokir kerja enzim DPP-4 dengan menghambat kerja hormon GLP-1 dan GIP. Penelitian ini menggunakan data inhibitor DPP-4 yang akan diekstraksi ciri menggunakan metode Extended-Connectivity Fingerprint (ECFP) dan Functional-Class Fingerprints (FCFP). Hasil ekstraksi ciri tersebut digunakan sebagai vektor masukan untuk metode deep neural network (DNN) untuk memprediksi inhibitor DPP-4 ke dalam senyawa aktif dan tidak aktif. Selain itu, metode CatBoost diusulkan sebagai metode pemilihan fitur terhadap hasil ekstraksi ciri metode ECFP dan FCFP. Dalam penelitian ini akan membandingkan performa metode DNN dengan menggunakan pemilihan fitur metode CatBoost dan tanpa menggunakan pemilihan fitur metode CatBoost. Hasil dari penelitian ini menunjukkan bahwa metode DNN menggunakan ekstraksi ciri ECFP_6 dengan proporsi pemilihan fitur sebesar 90% memiliki nilai sensitivitas, spesifisitas, akurasi, dan MCC berturut-turut adalah 0.927,0.881,0.906, dan 0.810. ......Diabetes mellitus type-2 (T2DM) is a chronic metabolic disease that often affects adults. T2DM is characterized by a decrease of insulin in the body. The dipeptidyl peptidase-4 (DPP-4) enzyme can catalyze a decrease of incretin peptide hormones, especially peptide-1, such as gastric inhibitory peptide (GIP) hormone and glucagon-like peptide-1 (GLP-1), which results in decreased insulin synthesis. DPP-4 inhibitors are a promising drug target for T2DM because they block the action of the DPP-4 enzyme by inhibiting the activity of the GLP-1 and GIP hormones. This study uses DPP-4 inhibitor data, which will be feature extracted using the Extended-Connectivity Fingerprint (ECFP) and Functional-Class Fingerprints (FCFP) methods. The results of feature extraction are used as input vectors of the deep neural network (DNN) method to predict DPP-4 inhibitors into active and inactive compounds. In addition, the CatBoost method is proposed as a feature selection method for the feature extraction results of the ECFP and FCFP methods. In this study, we will compare the performance of the DNN method using the feature selection of the CatBoost method and without using the feature selection of the CatBoost method. The results of this study indicate that the DNN method using feature extraction ECFP_6 with 90% of the feature selection having sensitivity, specificity, accuracy, and MCC values, respectively, 0.927, 0.881, 0.906, and 0.810.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Haris Hamzah
Abstrak :
Diabetes mellitus tipe-2 (T2DM) merupakan penyakit metabolisme kronis yang sering diderita oleh orang dewasa. T2DM ditandai dengan menurunnya insulin dalam tubuh. Enzim dipeptidil peptidase-4 (DPP-4) dapat mengkatalisasi penurunan hormon peptida inkretin, terutama peptide-1 seperti hormon gastric inhibitory peptide (GIP) dan glucagon-like peptide-1 (GLP-1), yang mengakibatkan penurunan sintesis insulin. Inhibitor DPP-4 adalah target obat yang menjanjikan untuk T2DM, karena dapat memblokir kerja enzim DPP-4 dengan menghambat kerja hormon GLP-1 dan GIP. Penelitian ini menggunakan data inhibitor DPP-4 yang akan diekstraksi ciri menggunakan metode Extended-Connectivity Fingerprint (ECFP) dan Functional-Class Fingerprints (FCFP). Hasil ekstraksi ciri tersebut digunakan sebagai vektor masukan untuk metode deep neural network (DNN) untuk memprediksi inhibitor DPP-4 ke dalam senyawa aktif dan tidak aktif. Selain itu, metode CatBoost diusulkan sebagai metode pemilihan fitur terhadap hasil ekstraksi ciri metode ECFP dan FCFP. Dalam penelitian ini akan membandingkan performa metode DNN dengan menggunakan pemilihan fitur metode CatBoost dan tanpa menggunakan pemilihan fitur metode CatBoost. Hasil dari penelitian ini menunjukkan bahwa metode DNN menggunakan ekstraksi ciri ECFP_6 dengan proporsi pemilihan fitur sebesar 90% memiliki nilai sensitivitas, spesifisitas, akurasi, dan MCC berturut-turut adalah 0.927,0.881,0.906, dan 0.810. ......Diabetes mellitus type-2 (T2DM) is a chronic metabolic disease that often affects adults. T2DM is characterized by a decrease of insulin in the body. The dipeptidyl peptidase-4 (DPP-4) enzyme can catalyze a decrease of incretin peptide hormones, especially peptide-1, such as gastric inhibitory peptide (GIP) hormone and glucagon-like peptide-1 (GLP-1), which results in decreased insulin synthesis. DPP-4 inhibitors are a promising drug target for T2DM because they block the action of the DPP-4 enzyme by inhibiting the activity of the GLP-1 and GIP hormones. This study uses DPP-4 inhibitor data, which will be feature extracted using the Extended-Connectivity Fingerprint (ECFP) and Functional-Class Fingerprints (FCFP) methods. The results of feature extraction are used as input vectors of the deep neural network (DNN) method to predict DPP-4 inhibitors into active and inactive compounds. In addition, the CatBoost method is proposed as a feature selection method for the feature extraction results of the ECFP and FCFP methods. In this study, we will compare the performance of the DNN method using the feature selection of the CatBoost method and without using the feature selection of the CatBoost method. The results of this study indicate that the DNN method using feature extraction ECFP_6 with 90% of the feature selection having sensitivity, specificity, accuracy, and MCC values, respectively, 0.927, 0.881, 0.906, and 0.810.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aditya Rizki Saputro
Abstrak :
Pada asuransi, tingkat risiko menjadi hal utama dalam menentukan ketentuan-ketentuan yang diterapkan oleh perusahaan asuransi seperti ketentuan besarnya premi yang harus dibayarkan pemegang asuransi. Pada asuransi kendaraan bermotor, salah satu cara untuk melihat tingkat risiko pemegang asuransi adalah dengan memprediksi apakah pemegang asuransi tersebut akan mengajukan klaim asuransi kendaraannya selama satu tahun ke depan. Banyaknya pemegang asuransi kendaraan menghasilkan data yang besar. Metode machine learning mampu mengolah data yang besar dan menghasilkan akurasi yang cukup tinggi. Sudah banyak metode-metode machine learning yang digunakan untuk prediksi klaim asuransi salah satunya neural network yang terinspirasi dari pengolahan informasi pada jaringan syaraf biologis. Terdapat metode deep neural network yang merupakan pengembangan neural network dengan struktur yang lebih kompleks dan menghasilkan akurasi yang lebih tinggi. Penelitian ini menerapkan metode deep neural network untuk memprediksi pengajuan klaim asuransi kendaraan bermotor dan menganalisa akurasi hasil simulasi. Pada penelitian ini juga dibandingan hasil akurasi antara metode deep neural network dengan metode neural network tandar. Hasil simulasi pada penelitian ini menunjukkan bahwa akurasi metode deep neural network lebih tinggi dibandingkan dengan metode neural network standar. ......In insurance, the level of risk is the main thing in determining the conditions applied by insurance companies. In automobile insurance, one way to see the risk level of insurance holders is to predict whether the insurance holder will submit an insurance claim for the vehicle for the next year. The number of automobile insurance holders produces large data. Machine learning method can process large data and produce high accuracy to predict claims. There have been many machine learning methods used for insurance claim prediction, for example is neural network. Neural network in machine learning inspired by information processing on biological neural network. Deep neural network which is the development of neural network with structures that are more complex and produce higher accuracy. This research uses deep neural network to predict claim automobile insurance and analyze the accuracy of the simulation result. We also compare the accuration of deep neural network with standart neural network. Our simulation show that the accuration of deep neural network is better than standart neural network.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>