Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Praswasti Pembangun Dyah Kencana Wulan
"Penelitian ini bertujuan memproduksi hidrogen (H2) dan carbon nanotube (CNT) secara simultan melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-AL. Secara garis besar, penelitian dibagi menjadi dua tujuan besar yaitu studi kinetika intrinsik dan pemodelan reaktor. Studi kinetika didekati dengan tiga cara. Model reaktor yang dibuat adalah reaktor pelat sejajar. Studi kinetika dengan internal reaktor pelat sejajar menghasilkan kinetika non-intrinsik. Pelapisan katalis pada pelat sebanyak 4 kali tidak mempunyai pengaruh yang signifikan pada loading katalis.
Hasil eksperimen diverifikasi menggunakan kriteria-kriteria limitasi tahanan massa dan panas (eksternal dan internal). Hasil verifikasi menunjukkan bahwa kinetika pelat sejajar tidak mampu mengatasi limitasi tahanan internal. Studi kinetika diperbaiki dengan internal reaktor berupa katalis serbuk. Studi kinetika serbuk menghasilkan kinetika intrinsik. Tetapi hasil ini tidak akurat karena deposisi karbon dihitung melalui neraca karbon terhadap waktu (pendekatan dinamik) padahal rata-rata 43,45% karbon hilang di akhir reaksi. Studi kinetika dilanjutkan menggunakan reaktor yang dilengkapi dengan microbalance. Kinetika model ini dapat mengukur pertambahan karbon sebagai fungsi waktu dan suhu pada tekanan atmosfer.
Hasil penelitian sebelum deaktivasi menunjukkan bahwa tahap pembatas laju reaksi adalah tahap adsorpsi. Energi aktivasi yang diperoleh sebesar 67,76 kJ/mol dan faktor pre-eksponensial 5,15 x 1018. Model persamaan kinetika deaktivasi katalis mempunyai persamaan laju deaktivasi orde satu. Reaktor katalis terstruktur pelat sejajar dimodelkan tiga dimensi (3D) kondisi stedi. Model 3 dimensi diselesaikan dengan program aplikasi computional fluid dynamics (CFD) yaitu COMSOL. Konversi metana dan yield hydrogen digunakan sebagai data validasi antara model dan data hasil eksperimen. Hasil simulasi mempunyai persentase kesalahan konversi total metana dan yield H2 berturut-turut 0,77% dan 2,38%. Validasi menunjukkan bahwa hasil model reaktor sesuai dengan data hasil percobaan laboratorium.

This study aims to produce hydrogen (H2) and carbon nanotube (CNT) simultaneously through methane decomposition reaction over a Ni-Cu-Al catalyst. The research is divided into two major objectives namely intrinsic kinetics study and reactor modeling. Kinetics studies were approached in three ways. Reactor model is made parallel flat plate reactor.
The result of kinetics study using internal reactor parallel-plate was nonintrinsic kinetics. Coating 4 times on the parallel plate had no significant effect on catalyst loading. The experimental results are verified using the criteria for limitation of mass and heat resistance (external and internal). Verification results show that kinetics of parallel-plate are not able to overcome the internal resistance limitation. Kinetics studies corrected with the reactor's internal form of the catalyst powder.
This experiment result is not accurate because of carbon deposition is calculated by carbon balance versus time (dynamic approach) whereas the average 43.45% of carbon lost by the end of the reaction. The last study using the reactor which is equipped with a microbalance. This model can measure carbon growth as a function of time and temperature at atmospheric pressure. The results before deactivation suggests that the limiting step is the adsorption. The activation energy of 67.76 kJ/mol and preexponential factor of 5.15 x 1018. Deactivation kinetics model have first order. Parallel-plate structured catalyst reactor is modeled three-dimensional (3D) with steady condition. 3-dimensional model solved by the application program computational fluid dynamics (CFD) namely COMSOL. Methane conversion and hydrogen yield used as validation between model and experimental data. The simulation results have an error percentage of the total methane conversion and H2 yield respectively 0.77% and 2.38%. Validation showed that the model in line with experimental data."
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1276
UI - Disertasi Open  Universitas Indonesia Library
cover
Ira Yulianti
"Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu tinggi secara simultan. Nanokarbon banyak diaplikasikan dalam penyimpanan hidrogen, support katalis, alat penyimpan memory, penyimpanan emisi, dan industri polimer, sedangkan hidrogen dapat digunakan sebagai umpan pada sel bahan bakar (fuel cell) yang ramah lingkungan karena apabila dibakar tidak menghasilkan polutan. Masalah yang biasanya timbul dalam reaksi dekomposisi katalitik metana ini adalah terjadinya deaktivasi katalis akibat deposit karbon dan terjadinya pressure drop di dalam reaktor.
Penelitian ini bertujuan menguji kinerja reaktor dengan katalis terstruktur untuk mengatasi pressure drop di dalam reaktor. Katalis Ni-Cu-Al dipreparasi dengan menggunakan metode sol-gel dengan perbandingan atomik 2:1:1. Katalis ini dilapisi pada kawat stainless steel yang telah dibentuk dengan metode dip coating. Reaksi dilakukan dengan mengalirkan metana ke dalam reaktor pada temperatur 650°C dan 700°C serta tekanan atmosferik. Produk gas dianalisis dengan menggunakan gas chromatography yang terpasang secara online dengan aliran keluar reaktor. Penggunaan katalis terstruktur pada dua temperatur berbeda ini dapat menghasilkan konversi metana hingga 87.55 % dan 94.87%. Produk dari reaksi dekomposisi katalitik metana berupa hidrogen memiliki kemurnian hingga 87.53% dan 95.14%.
Karbon yang dihasilkan memiliki yield 28.45 dan 32.85 gr karbon/gr katalis untuk waktu reaksi 8.4 jam. Untuk reaksi selama 33 jam menghasilkan 201 gr karbon/gr katalis. Karakterisasi dengan menggunakan TEM menunjukkan karbon yang dihasilkan berbentuk nanotube dengan diameter 50-100. Pada reaktor dengan katalis terstruktur ini tidak terjadi pressure drop yang dapat mengakibatkan berakhirnya reaksi. Reaksi berakhir karena katalis sudah terdeaktivasi akibat tertutupnya permukaan katalis oleh deposit karbon. Lifetime katalis dapat mencapai 33 jam dan masih dapat berlanjut.
......Methane decomposition is an alternative way to produce high quality carbon nanotubes (CNTs) and hydrogen simultaneously. CNTs can been used for various applications such as hydrogen storage, electronic device, composite materials, field emission source, and catalyst support. Hydrogen can be used as the future clean energy resource such as for fuel cells, which doesn't emit pollutants when combusted. The problem often found in methane catalytic decomposition is the presence of pressure drop. This problem is expected to be solved by designing a structured catalyst reactor.
In this experiment, Ni-Cu-Al catalyst is prepared by sol-gel method. Stainless steel wiremesh is coated with catalyst by dip coating method and put into a quartz tube reactor. The experiment was done at 650°C and 700°C with atmospheric pressure. Methane is fed into the reactor and decomposed by the catalyst. An online chromatograph is used to detect the gas products. The morphology of CNTs is characterized by TEM. The use of structured catalyst in these two different temperature gives conversion of methane up to 87.55 % and 94.87%. Hydrogen as the product has a purity of 87.53% dan 95.14% .
The carbon yields are 28.45 and 32.85 gr carbon / gr catalyst for 8.4 hours of reaction. For 33 hours of reaction, the yield becomes 201 gr carbon/ gr catalyst. TEM characterization shows that the diameter of CNTs are between 50-100 nm for both cases. Pressure drop isn't found in this structured catalyst reactor which could end the reaction. The reaction ends when the catalyst is deactivated due to carbon deposit on the catalyst. The lifetime of the catalyst can reach 33 hours and can still continue."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49673
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizka Yulina
"Produksi karbon nanotube yang memiliki nilai komersil sekaligus hidrogen sebagai bahan bakar ramah lingkungan dapat dilakukan melalui reaksi dekomposisi katalitik metana. Untuk memproduksinya pada skala komersil dibutuhkan studi kinetika untuk memperoleh parameter kinetika reaksi yang berguna untuk keperluan perancangan reaktor. Pada penelitian ini, dilakukan preparasi katalis Ni/Cu/Al yang dilapiskan pada substrat katalis gauze.
Percobaan pendahuluan dilakukan untuk memperoleh daerah kinetika yang tidak dipengaruhi oleh fenomena perpindahan massa dan panas, dengan memvariasikan laju alir pada rentang 15-23 ml/menit pada suhu 650oC. Uji kinetika reaksi pada tekanan 1 atm dan variasi suhu 650-750oC dilakukan untuk memperoleh data kinetika. Data kinetika lalu diuji dengan model kinetika mikro yang diturunkan dari mekanisme reaksi permukaan katalis. Model kinetika yang paling sesuai menunjukkan tahap penentu laju reaksi dekomposisi metana.
Hasil penelitian uji kinetika menunjukkan bahwa tahap penentu laju reaksi dekomposisi metana adalah tahap reaksi permukaan dimana terjadi pelepasan 1 molekul H dari molekul metana yang teradsorpsi pada inti aktif katalis. Energi aktivasi yang diperoleh sebesar 19,3 kJ/mol. Deaktivasi katalis terjadi pada reaksi sehingga diperlukan suatu faktor koreksi terhadap persamaan laju reaksi.
......Production of carbon nanotubes which has high commercial values together with hydrogen as green energy can be done by catalytic decomposition of methane. Producing hydrogen and carbon nanotubes into commercial scale needs a kinetic study in order to get the kinetic reaction parameters which is useful for design of reactor. In this research, preparation of gauze wire as substrat of Ni/Cu/Al catalyst was done by coating the Ni/Cu/Al catalysts to the wire.
Initial experiment has been done to obtain the kinetics area which is not controlled by mass and heat transfer, by making variation of the flowrate in the range of 15-23 ml/minutes at the temperatur of 650oC. Kinetics evaluation was done at the pressure of 1 atm and the temperatur range of 650-750oC to obtain kinetics data. This data next will be evaluated by the model of micro kinetics that has been formulated by reaction mechanism of the surface of catalysts. The best kinetic model that fits with the data means that the reaction is the rate limiting step of methane decomposition.
The result of kinetic study shows that the rate limiting step is the surface reaction when a molecule of hydrogen released from the methane which is adsorbed in active site of catalysts. The activation energy obtained is 19,3 kJ/mol. Catalysts deactivation occurs in this reaction, so that it is necessary to make a correction of the rate laws."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52243
UI - Skripsi Open  Universitas Indonesia Library
cover
Robbin Yonathan Edwie
"Penelitian-penelitian terkait permodelan pertumbuhan CNT masih menganggap pertumbuhan CNT tersebut konstan terhadap fungsi waktu. Padahal, pertumbuhan CNT tersebut tidak konstan terhadap waktu karena adanya persitiwa deaktivasi katalis. Pada penelitian ini, akan dilakukan variasi komposisi metana dan hidrogen dalam umpan dan juga temperatur operasi untuk melihat pengaruh parameterparameter tersebut terhadap laju pertumbuhan CNT. Fenomena perpindahan yang diwakili oleh penurunan neraca perpindahan massa, energi dan kinetika reaksi tersebut akan disusun menjadi sebuah model dan disimulasi dengan menggunakan software COMSOL Multiphysics sehingga penelitian ini menghasilkan sebuah model laju pertumbuhan daripada CNT sebagai fungsi waktu pada inti aktif katalis Ni/Al2O3.
......Modelling studies related to the growth of CNT still considered that the growth rate of CNT is constant. At the fact, the growth rate of CNT wouldn?t be constant because there is an effect of catalyst deactivation. In this study, we will vary the composition of methane and hydrogen on feed and the temperatur operation to study the effect of that parameters on the CNT growth rate. The transport phenomenon which is represented by differentiation of mass transfer balance, energy and reaction kinetic will be organized to create a model and simulated with the software COMSOL Multiphysiscs so that this study will produce a growth model of CNT as a function of time on Ni/Al2O3 catalyst."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1836
UI - Skripsi Open  Universitas Indonesia Library
cover
Estu Fitri Prasastiani
"Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu dan bernilai ekonomi tinggi secara simultan. Persamaan kinetika yang akurat dalam merepresentasikan reaksi dekomposisi katalitik metana diperlukan dalam pemodelan kinetika, desain reaktor, dan scale-up reaktor, maka dilakukan penelitian kinetika reaksi dekomposisi katalitik metana menggunakan reaktor katalis Ni/Cu/Al2O3 terstruktur model parallel flat plate.
Penelitian diawali dengan memformulasikan beberapa model persamaan kinetika dengan pendekatan analisis kinetika mikro (adsorpsi isotermis). Masing-masing model persamaan kinetika kemudian diuji dengan data kinetika yang diperoleh secara eksperimental. Data kinetika eksperimental diambil dengan variasi temperature dari 650 _C sampai 750 _C pada tekanan amosferik.
Hasil pengujian model persamaan kinetika dengan data kinetika menunjukkan bahwa model kinetika yang memiliki keakuratan tertinggi dalam merepresentasikan kondisi reaksi dekomposisi katalitik metana adalah model persamaan kinetika dengan adsorpsi sebagai tahap pembatas laju reaksi.
Hasil penelitian menunjukkan bahwa untuk reaksi dekomposisi katalitik metana menggunakan katalis Ni/Cu/Al2O3, energi aktivasi yang diperoleh adalah sebesar 15 kJ/mol dan faktor frekuensi sebesar 115 x 106.
Hasil penelitian juga menunjukkan terjadinya deaktivasi katalis akibat deposit karbon pada permukaan katalis sehingga ditentukan pula model persamaan kinetika yang melibatkan deaktivasi katalis dengan persamaan laju deaktivasi orde nol.
......Methane Catalytic Decomposition is one of the alternatives to produce qualified and expensive hydrogen and nanocarbon simultaneously. An accurate kinetic equation in representing methane catalytic decomposition reaction is needed in kinetic modelling, reactor design, and reactor scale up. Thus, A research on methane catalytic decomposition reaction using structured Ni/Cu/Al2O3 catalytic reactor with parallel flat plate model is conducted.
The research was initiated by formulating several kinetics equation model using micro kinetic analysis approach (isotermic adsorption). Each model then tested using kinetic data acquired from the experiment. The kinetic experimental data was varied in temperature range from 650 _C to 750 _C on atmospheric pressure.
The result shows that kinetic model which has the highest accuracy in representing methane catalytic decomposition reaction condition is the kinetic equation model with adsorption as the rate limiting step.
The results also shows that methane catalytic decomposition reaction using Ni/Cu/Al2O3 catalyst, the energy activation acquired is 15 kJ/mol and 115 x 106 frequency factor.
The result also shows catalyst deactivation due to carbon deposit on the catalyst surface, therefore, catalyst deactivation is involved in kinetic equation model with zero order decay rate law."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52220
UI - Skripsi Open  Universitas Indonesia Library
cover
Novri Yeni
"ABSTRAK
Carbon loss dengan besar lebih dari 65% menjadi kendala utama dalam produksi
CNT skala pilot menggunakan reaktor gauze. Identifikasi carbon loss dilakukan dengan
menganalisis kemungkinan penyebab carbon loss seperti error pada pengukuran laju
alir produk, evaluasi perubahan laju alir umpan karena adanya katalis dan penumbuhan
CNT dalam reaktor, analisis komposisi gas produk dengan GC FID dan kemungkinan
terbawanya karbon sebagai partikulat dalam aliran produk. Hasil penelitian menunjukkan
bahwa carbon loss awal sebelum dianalisis dengan metoda diatas jauh lebih kecil dari
penelitian sebelumnya yaitu 27,64%. Hal ini dikarenakan laju alir umpan telah
dikalibrasi dengan kondisi reaktor berisi katalis bukan reaktor kosong. Carbon loss
mencapai 69,14% jika laju umpan yang digunakan pada perhitungan adalah hasil
kalibrasi saat reaktor kosong. Adanya katalis menyebabkan laju alir umpan yang masuk
lebih kecil 28% dari saat kondisi kosong. Error laju alir produk karena pengukuran
dengan bubble soap memberikan error perhitungan carbon loss ± 4,14%. Perubahan laju
alir umpan karena penumbuhan CNT dalam reaktor mengurangi besarnya carbon loss
sebanyak 4,97%. Sedangkan terdeteksinya hidrokarbon skunder dengan GC FID selama
produksi CNT berlangsung mengurangi carbon loss sebesar 5,41%. Selain itu, partikulat
yang terbawa oleh aliran produk sangat sedikit dan hanya mengoreksi carbon loss sebesar
0.05%.Dengan memperhitungkan semua faktor diatas, besarnya carbon loss pada
penelitian ini adalah (16,23 ± 4,14)%. Jika diasumsikan 4,14% carbon loss disebabkan
oleh error selama pengukuran laju produk maka besarnya carbon loss adalah 12,09% .
Artinya lebih dari 57% carbon loss pada penelitian ini telah teridentifikasi.

Abstract
Carbon loss by more than 65% was the major obstacles to the pilot-scale
production of CNTs using gauze reactor. Therefore in this study, to be identified by
analyzing the possible causes of carbon loss, such as error of product flow rate due to
measurement of bubble soap and possible of feed flow rate changes due to the catalyst
presence and the CNT growth in the reactor, analysis of product composition by GC FID
and analysis the possibility of particulate carbon in gas products was identified too by
using glass fiber filters. The results showed that the initial carbon loss calculation before
prior to be analized by the above method was much smaller than previous studies, namely
27.64%. This is because feed flow rate has been calibrated with the condition of the
reactor containing the catalyst instead of an empty reactor. Carbon loss will reach 69.14%
if the feed rate used in the calculation was calibration results when the reactor is empty.
This is because the catalyst in the reactor led to feed flow rate less 28% of the total
discharge current when the empty reactor. Product flow rate error due to measurement of
bubble soap give error in the carbon loss calculation up to ± 4.14%. Changes in feed flow
rate because the growth of CNTs in the reactor reduce the amount of carbon loss as much
as 4.97%. While the detection of secondary hydrocarbons by GC FID during CNT
production reduces carbon loss up to 5,41%. In addition, particulate matter carried by the
flow of products is very little and only give carbon loss corrected for 0.05%. Taking into
account all the factors above, the amount of carbon loss in this study were 16.23 ± 4.14%.
If we assume 4,14& carbon loss was caused by error occurred during the study, the
amount of carbon loss is 12.09%. This means that more than 57% carbon loss in this
study have been identified.
"
Fakultas Teknik Universitas Indonesia, 2012
S43596
UI - Skripsi Open  Universitas Indonesia Library