Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10 dokumen yang sesuai dengan query
cover
Kramer, Steven Lawrence.
Upper Saddle River: Prentice-Hall, 1996
624.176 2 KRA g (1)
Buku Teks  Universitas Indonesia Library
cover
Borg, Sidney F.
New York : Wiley, 1983
624.176 2 BOR e (1)
Buku Teks  Universitas Indonesia Library
cover
Nottingham: Wiley InterScience,
551 EESD
Majalah, Jurnal, Buletin  Universitas Indonesia Library
cover
Day, Robert W.
Abstrak :
Buku yang berjudul "Geotechnical earthquake engineering handbook" ini ditulis oleh Robert W. Day. Buku ini merupakan sebuah buku panduan mengenai geoteknik gempa bumi.
New York: McGraw-Hill, 2002
R 624.176202 DAY g
Buku Referensi  Universitas Indonesia Library
cover
Abstrak :
The report summarizes damage associated with ground failures including landslide and liquefaction as well as non-structural damages such as to equipment and facilities, partitioning walls and ceilings, and functional failures in skyscrapers. Also brief description of the Japanese seismic design code will be provided in the Appendix. A proposed scheme of anti-tsunami design for buildings is also included.
Tokyo : [, Springer], 2012
e20398669
eBooks  Universitas Indonesia Library
cover
James Wijaya
Abstrak :
The work presented in this thesis is divided two subjects. First, devoted to the behavior, mechanic model, simulation and analysis of plate tectonics under excitation force approximated. Approach of an Earthquake are assumptions on the nature of the rupture process, review the evidence for the essential importance of the flow under plate with the modes of deformations. Earthquake is primarily a mechanical process which appears as genuire rupture of crust and the earth behaves as an elastic body during the short time span of the phenomena. The friction has probably a fundamental role in the mechanics of the earthquakes. Rock mechanicians consider an earthquake as a stick-slip event controlled by the friction properties of the fault. During an earthquake, on the nature of the fault and on the effect of trapped fluids within the crust at seismogenic depth, fault zone head seismic waves are generated by a shear-dislocation source and then propagated through the modeled earth medium. Wave propagation theory is used to solve the problem at hand for wave motion response, which is found as the superposition of the mean and scattered wave response. Second, devoted model of the wave propagation, an important modeling tool of fault zone properties at depth can be provided by accurate simulations of seismic fault zone head and trapped waves for realistic structures. Analytical solutions for seismic wave fields generated by double-couple sources at material discontinuities in plane-parallel structures. Extensive 2D studies of the dependency of fault zone wave motion on basic media properties and source receiver geometries show that there are significant trade offs between propagation distances along the structure, fault zone width, impedance contrasts, source location within. And the most important applications of the theory of structural dynamics is in analyzing the response of the structures to ground shaking caused by an earthquake. The study for earthquake response of linear SDF systems to earthquake motions concerned the displacement, velocity and acceleration. Then we introduced the response spectrum concept, which is central to earthquake engineering, together with procedures to determine the peak response of systems directly from the response spectrum.
Depok: Fakultas Teknik Universitas Indonesia, 2002
T9957
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
This book gathers 23 papers by top experts from 11 countries, presented at the 3rd Houston International Forum: Concrete Structures in Earthquake. Designing infrastructures to resist earthquakes has always been the focus and mission of scientists and engineers located in tectonically active regions, especially around the Pacific Rim of Fire including China, Japan, and the USA. The pace of research and innovation has accelerated in the past three decades, reflecting the need to mitigate the risk of severe damage to interconnected infrastructures, and to facilitate the incorporation of high-speed computers and the internet. The respective papers focus on the design and analysis of concrete structures subjected to earthquakes, advance the state of knowledge in disaster mitigation, and address the safety of infrastructures in general.
Singapore: Springer Nature, 2019;2019
e20507570
eBooks  Universitas Indonesia Library
cover
Abstrak :
This book gathers selected proceedings of the annual conference of the Indian Geotechnical Society, and covers various aspects of soil dynamics and earthquake geotechnical engineering. The book includes a wide range of studies on seismic response of dams, foundation-soil systems, natural and man-made slopes, reinforced-earth walls, base isolation systems and so on, especially focusing on the soil dynamics and case studies from the Indian subcontinent. The book also includes chapters addressing related issues such as landslide risk assessments, liquefaction mitigation, dynamic analysis of mechanized tunneling, and advanced seismic soil-structure-interaction analysis. Given its breadth of coverage, the book offers a useful guide for researchers and practicing civil engineers alike.
Singapore: Springer Singapore, 2019
e20501328
eBooks  Universitas Indonesia Library
cover
Abstrak :
The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.
Berlin: Springer Berlin, Heidelberg, 2019
e20509036
eBooks  Universitas Indonesia Library
cover
Abstrak :
This book features chapters based on selected presentations from the International Congress on Advanced Earthquake Resistance of Structures, AERS2016, held in Samsun, Turkey, from 24 to 28 October 2016.It covers the latest advances in three widely popular research areas in Earthquake Engineering: Performance-Based Seismic Design, Seismic Isolation Systems, and Structural Health Monitoring. The book shows the vulnerability of high-rise and seismically isolated buildings to long periods of strong ground motions, and proposes new passive and semi-active structural seismic isolation systems to protect against such effects. These systems are validated through real-time hybrid tests on shaking tables. Structural health monitoring systems provide rapid assessment of structural safety after an earthquake and allow preventive measures to be taken, such as shutting down the elevators and gas lines, before damage occurs. Using the vibration data from instrumented tall buildings, the book demonstrates that large, distant earthquakes and surface waves, which are not accounted for in most attenuation equations, can cause long-duration shaking and damage in tall buildings. The overview of the current performance-based design methodologies includes discussions on the design of tall buildings and the reasons common prescriptive code provisions are not sufficient to address the requirements of tall-building design. In addition, the book explains the modelling and acceptance criteria associated with various performance-based design guidelines, and discusses issues such as selection and scaling of ground motion records, soil-foundation-structure interaction, and seismic instrumentation and peer review needs.The book is of interest to a wide range of professionals in earthquake engineering, including designers, researchers, and graduate students.
Switzerland: Springer Cham, 2019
e20502366
eBooks  Universitas Indonesia Library