Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 32 dokumen yang sesuai dengan query
cover
Sengli Egani
"Kecanggihan dalam bidang pengenalan wajah berbasis deep learning semakin berkembang dan telah menjadikannya salah satu teknik biometrik yang paling dapat diandalkan. Namun, penggunaan masker penutup mulut dan hidung akibat pandemi COVID-19 membuat model pengenalan wajah kehilangan sekitar setengah dari informasi biometrik yang berguna dan mengakibatkan penurunan tingkat akurasi. Penelitian ini bertujuan untuk mengajukan model pengenalan wajah bermasker alternatif berakurasi tinggi. Untuk mengembangkan Convolutional Neural Networks (CNNs) sebagai ekstraktor fitur dari pengenalan wajah bermasker, tiga hal yang paling berkontribusi ialah data latih yang besar, arsitektur jaringan dan fungsi kerugian (loss function). Model yang diajukan berasal dari hasil modifikasi arsitektur ResNet dengan menyisipkan blok RepMLP. Kemudian, membandingkan hasil pelatihan tersebut menggunakan fungsi kerugian terbaik saat ini, ArcFace loss dan CurricularFace loss. Model dilatih menggunakan data latih MS1M-V3. Model terbaik yang dapat diajukan dari penelitian ini berhasil memperoleh nilai akurasi 77,8% saat diuji menggunakan data MFR2. Nilai akurasi tersebut 2,3% lebih tinggi dibandingkan dengan model baseline (ResNet-50) yang digunakan dalam penelitian ini. Selain berhasil memperoleh nilai akurasi yang lebih baik, model yang dijukan memiliki jumlah parameter yang lebih sedikit dibandingkan model baseline.
......Sophistication in deep facial recognition is still growing and has made it one of the most reliable biometric techniques. However, using masks covering the mouth and nose due to the COVID-19 pandemic has caused facial recognition models lose about half of the useful biometric information and decreased the accuracy. This study aims to propose a high-accuracy alternative masked facial recognition model. The success of Convolutional Neural Networks (CNNs) on face recognition mainly contributed by enormous training data, network architectures, and loss functions. The proposed model comes from a modification of the ResNet architecture by inserting RepMLP blocks. Then, compares the training results using the current best loss function, ArcFace loss and CurricularFace loss. The model was trained using the MS1M-V3 training data. The best model that can be proposed from this study managed to obtain an accuracy value of 77.8% when tested using the MFR2 dataset. This accuracy value is 2.3% higher than the baseline model (ResNet-50) which used in this study. Besides being successful in obtaining better accuracy values, the proposed model has fewer parameters than the baseline model."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jidan Dhirayoga Gumbira
"Skripsi ini membahas tentang pengembangan sistem face recognition yang diaplikasikan pada aplikasi ujian berbasis Android yang diberi nama AyoTest menggunakan FaceNet. Tujuan dari dikembangkannya AyoTest sendiri adalah untuk membantu tenaga pengajar dalam meningkatkan efektivitas pengawasan ujian yang dilakukan secara daring. Penelitian ini diharapkan dapat membantu dalam meningkatkan efektivitas pengawasan ujian daring dengan menggunakan face recognition untuk mengotomatisasi sebagian besar dari kegiatan pengawasan yang sebelumnya harus dilakukan secara manual oleh tenaga pengajar. Berdasarkan hasil penelitian, didapatkan bahwa implementasi sistem face recognition dari aplikasi AyoTest dapat digunakan untuk meningkatkan efektivitas pengawasan ujian, di mana pada proses face authentication akurasi yang didapatkan adalah sebesar 100% bahkan ketika peserta ujian hanya memiliki 1 foto pada basis data wajah dan nilai false negative dan false positive pada proses face monitoring yang tercatat hanya sebesar 16,67% dan 22,22% untuk 18 partisipan yang berhasil melaksanakan ujian.
......This bachelor thesis discusses the system development of face recognition applied to an Android-based examination application called AyoTest using FaceNet. The purpose of the development of AyoTest itself is to assist teaching staff in increasing the effectiveness of conducting online examinations. This research is hoped to assist in increasing the effectiveness of examination proctoring with face recognition to automate most of the supervisions that previously had to be conducted manually by teaching staff. Based on the results of the research, it was found that the implementation of the face recognition system from the AyoTest application can be used to increase the effectiveness of examination proctoring, where the accuracy score obtained in the face authentication process is 100% even if the examinee only has 1 photo in the face database and the false negative and false positive scores in the face monitoring process were recorded at only 16.67% and 22,22% for 18 participants who successfully carried out the examination."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laili Gita
"Data kehadiran adalah data yang penting baik di lingkup sekolah, universitas, maupun perkantoran untuk karyawan. Presensi yang berupa tandatangan dapat dipalsukan oleh siapa saja dan kapan saja. Sehingga dibutuhkan sebuah perangkat yang dapat mempermudah proses absensi sekaligus mendeteksi keterlambatan siswa/pegawai sebelum memasuki ruangan. Skripsi ini mengembangkan Smart Presence System berbasis Face Recognition dengan machine learning yang dirancang dengan komputasi pada awan (Cloud Computing) dan komputasi pada sebuah node/titik (Fog Computing). Skripsi ini melakukan perbandingan performa Smart Presence System yang dibangun dengan Cloud Computing menggunakan layanan AWS Face Rekognition dan Fog Computing yang ditulis menggunakan bahasa Python dengan library OpenCV yang menggunakan perangkat Raspberry Pi sebagai titik komputasi. Penulis telah melakukan pengujian perbandingan waktu komputasi, penggunaan memori, serta penggunaan biaya antara Cloud Computing dan Fog Computing. Pengujian waktu komputasi dilakukan dengan menggeser router/titik uji sejauh 3 meter, 5 meter dan 7 meter dari sensor kamera. Pengujian waktu komputasi pada Cloud Computing didpat sebesar 11.02 detik, 2.99 detik dan 3.02 detik dengan total penggunaan memori sebesar 0.0042 MB dan total biaya yang diperlukan untuk membangun rancangan Cloud Computing sebesar Rp2.819.516 dalam penggunaan 12 bulan. Dan rata-rata waktu untuk komputasi pada fog sebesar 0.723 detik, 0.99 detik, 1.94 detik dengan total penggunaan memori sebesar 540MB dan total biaya untuk membangun rancangan ini sebesar Rp2.220.00 dalam penggunaan 12 bulan.
......
Attendance document is an important thing in schools, universities, and offices for employees. Attendance is usually done by giving a signature on a piece of paper, and it can be forged by anyone. In school, attendance is usually done manually by the teacher and it takes time. So we need a device that can simplify the attendance process and can not be forged. This thesis has developed a Smart Presence System with machine learing designed with Cloud Computing and Fog Computing. This Thesis compared the performance of The Smart Presence System that built with Cloud Computing using AWS Rekognition and Fog Computing that built in Raspberry pi and written in python and library Opencv. The author has tested the comparison of Cloud Computing and Fog Computing in Computing Time, Memory usage and Cost. Computing time testing is done by shifting the router/test point as far as 3 meters, 5 meters, and 7 meters. The computing time on Cloud Computing were 11.02s, 2.99s, and 3.02s with total memory usage of 0.0042MB and the total cost is Rp.2.819.516 in 12 months of use. And The computing time on Fog Computing were o.72s, 0.99s, and 1.94s with the total memory usage of 540MB and the total cost to build this architecture is Rp2.220.000 in 12 months of use."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novia R. Putri
"ABSTRAK
Learning Vector Quantization (LVQ) merupakan salah satu metode yang digunakan dalam jaringan syaraf tiruan atau Artificial Neural Network. Namun untuk data yang bervariasi,performa LVQ mengalami penurunan, hal ini terlihat dari tingkat rekognisi yang diperoleh. Oleh karena itu dikembangkan metode logika Fuzzy yang diperkirakan mampu menaikkan kembali tingkat rekognisi dan performa dari LVQ . Hasil yang diperoleh menunjukkan bahwa dengan logika Fuzzy tingkat rekognisi naik hingga 40 %.

ABSTRACT
Learning Vector Quantization (LVQ) is one of the method that used in Artificial Neural Network.,but result shows that any data variations have decreasing the recognition rate. Fuzzy Logic developed to increasing and reinstate the recognition rate of LVQ. With Fuzzy logic, the result shows that recognition rate achieve 40% of increasing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42174
UI - Skripsi Open  Universitas Indonesia Library
cover
"This book spans current progress in biometric systems including face recognition, fingerprint recognition, iris recognition and image search systems, connecting them to each other and to progress in color and pattern analysis, mathematics and computer science. "
Berlin: Springer, 2012
e20398162
eBooks  Universitas Indonesia Library
cover
cover
Yuni Arti
"Sistem pengenalan wajah dapat memberikan hasil yang tepat pada kondisi wajah normal, tetapi dalam lingkungan yang tidak dibatasi menyebabkan hasil pengenalan wajah menjadi tidak akurat, baik pada verifikasi maupun identifikasi. Salah satu masalah yang sering ditemui dalam sistem pengenalan wajah dan terkait dengan sifat intra-class variance pada wajah adalah pose. Penelitian ini bertujuan untuk melakukan pengenalan wajah berdasarkan pose invariant dengan mengimplementasikan Spatial Transformer Netwok (STN) pada arsitektur jaringan ringan MobileFaceNet. STN digunakan sebagai metode penyelarasan wajah untuk menangani variasi pose pada citra input. Berdasarkan evaluasi model, model Single-STN MobileFaceNet memberikan akurasi, AUC dan EER berturut-turut 73.64%, 82.18%, dan 0.2636. Kenaikannya sebesar 1.21% untuk akurasi, 1.56% untuk AUC dan untuk EER turun sebesar 0.0121 dari model Baseline. Penambahan STN pada jaringan ringan MobileFaceNet mempengaruhi hasil verifikasi wajah, tetapi kurang signifikan. Akan tetapi, berdasarkan hasil uji signifikansi McNemar, tidak ada perbedaan yang signifikan dengan adanya metode penyelarasan wajah STN pada model Single-STN MobileFaceNet. Terdapat beberapa kasus pose yang tidak dapat ditangani dengan baik oleh model, seperti pose menengadah atau menengok ke kanan/kiri. Berdasarkan evaluasi robustness model, nilai akurasi, AUC dan EER yang dihasilkan model Single-STN MobileFaceNet berturut-turut 96.86%, 98.51%, 0.0314. Model Single-STN MobileFaceNet termasuk model yang memiliki kinerja baik dalam pengenalan wajah, model mampu membedakan pasangan citra match dan non-match dengan baik pada dataset CFP
......The face recognition system can give precise results in normal facial conditions, but in an unconstrained environment it can result inaccurate face recognition, both in verification and identification. One of the problems that are often encountered in face recognition system and related to intra-class variance on the face is pose. This study aims to perform face recognition based on pose invariant by implementing Spatial Transformer Netwok (STN) on MobileFaceNet lightweight network architecture. STN is used as a face alignment method to handle pose variations in the input image. Based on the evaluation of the model, the Single-STN MobileFaceNet model provides accuracy, AUC and EER of 73.64%, 82.18%, and 0.2636, respectively. The increase is 1.21% for accuracy, 1.56% for AUC and for EER it is down by 0.0121 from the Baseline model. The addition of STN to the MobileFaceNet lightweight network affects the face verification results, but is less significant. However, based on the results of the McNemar significance test, there is no significant difference with the STN face alignment method in the Single-STN MobileFaceNet model. There are some cases of poses that cannot be handled well by the model, such as looking up or looking to the right/left. Based on the evaluation of the robustness of the model, the values ​​of accuracy, AUC and EER generated by the Single-STN MobileFaceNet model are 96.86%, 98.51%, 0.0314, respectively. The Single-STN MobileFaceNet model includes a model that has good performance in face recognition. This model is able to distinguish match and non-match image well on the CFP dataset."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Agastya Vitadhani
"Kombinasi thumbnail dan judul pada portal berbagi video sangat berguna untuk memberikan gambaran mengenai isi video. Tetapi, terdapat juga thumbnail yang bersifat clickbait yang lebih bertujuan memancing masyarakat untuk menonton video. Bahkan terdapat clickbait thumbnail yang dibuat untuk menyesatkan masyarakat dengan agenda untuk membangun opini tertentu. Untuk membatasi variasi pada dataset permasalahan dipersempit pada clickbait thumbnail yang mengandung ujaran kebencian terhadap dai. Thumbnail yang dipilih sebagai dataset terdiri dari foto satu orang atau lebih dengan disertai teks narasi. Dari thumbnail diperoleh informasi berupa identitas individu dengan menggunakan face recognition dan teks narasi dengan menggunakan optical character recognition. Untuk mengolah teks narasi dari thumbnail dan judul video digunakan teknik analisis sentimen. Dibangun model machine learning dengan data yang diperoleh dari identitas, teks narasi dan judul video dengan menggunakan model SVM. Evaluasi terhadap model machine learning dilakukan dengan validasi silang 5-fold. Evaluasi menghasilkan akurasi 0.968, sensitivitas 0.968, nilai presisi 0.9698 dan F1-Score 0.967.
......The combination of thumbnails and titles on video sharing portals is effective for providing an overview of the content of the video. However, there are also clickbait thumbnails that are more intended to lure people into watching the videos. There are even clickbait thumbnails created to mislead the public with an agenda to build a particular opinion. To limit the variation in the dataset the problem was narrowed down to clickbait thumbnails containing hate speech against dai. Thumbnails selected as datasets consist of photos of one or more people accompanied by narrative text. From the thumbnails, information is obtained in the form of individual identities using face recognition and narrative texts using optical character recognition. To process narrative text from thumbnails and video titles, sentiment analysis techniques are used. A machine learning model was built with data obtained from identity, narration text, and video titles using the SVM model. Evaluation of the machine learning model is carried out with 5-fold cross-validation. The evaluation resulted in an accuracy of 0.968, a sensitivity of 0.968, a precision value of 0.9698, and an F1-Score of 0.967"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Raynaldi Suhaili
"ABSTRAK
Dalam beberapa tahun terakhir, kemajuan besar telah terjadi pada sistem pengenalan wajah. Banyak model yang telah diusulkan. Pada penelitian ini, uji coba dilakukan dengan model tertentu. Teknik Logarithm Transformation pertama-tama diterapkan untuk meningkatkan kualitas gambar wajah dan mengatasi variasi pencahayaan. Selanjutnya dilakukan proses ekstraksi fitur wajah dari gambar berdasarkan Singular Value Decomposition SVD . Nilai singular diambil sebagai fitur yang diasumsikan merepresentasikan gambar citra wajah. Kemudian, algoritma K-Nearest Neighbors KNN dijalankan untuk proses klasifikasi, sehingga menghasilkan persentase tingkat akurasi program. ORL faces database dipilih untuk menguji model program pengenalan wajah. Dalam penelitian ini, data uji menggunakan hasil ektraksi fitur SVD dibandingkan dengan data uji tanpa ekstraksi fitur. Dari hasil uji coba, diperoleh bahwa penggunaan data uji menggunakan hasil ekstraksi fitur SVD menghasilkan proses running time yang lebih cepat dibandingkan dengan menggunakan data tanpa ekstraksi fitur. Namun persentase tingkat akurasi rata-rata tertinggi yang didapatkan pada setiap iterasi terpilih, lebih baik hasilnya dengan data uji tanpa ektraksi fitur, yaitu sebesar 98,34 pada 90 data training, dibandingkan dengan data uji hasil ektraksi fitur SVD yang memperoleh persentase tingkat akurasi rata-rata sebesar 82,82 pada 90 data training.

ABSTRACT
In the past several years, major advances have occurred in face recognition system. Many models have been proposed. In this paper, the experiments were carried out with a particular model. The Logarithm Transformation LT technique is firstly applied to enhance the face image and handling lighting variations of face image. Furthermore, extract the feature of the face image based on Singular Value Decomposition SVD . The singular value is taken as a feature that is assumed to represent the face image. Then, K Nearest Neighbors KNN algorithm is run for the classification process, so it generates an accuracy of program. ORL database was chosen to test the model of face recognition program. In this research, data using the feature extraction were compared to the data without feature extraction. From the test results, it was found that the use of test data using feature extraction has a faster running time than using data without feature extraction. However, the highest rate of average accuracy that obtained on each chosen iteration, the result is better with the test data without feature extraction, that is 98.34 at 90 data training, compared to the test data using feature extraction which has average accuracy level of 82.82 at 90 of data training."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Idham Ramadito
"Proses identifikasi dan pengenalan emosi seseorang selama ini hanya dapat dilakukan secara langsung dengan melihat raut wajahnya secara langsung dan mengolah raut wajah dari orang tersebut untuk mengerti emosi yang sedang dirasakan. Emosi dari raut wajah seseorang merupakan sesuatu yang paling susah dimengerti dan manfaat dari aplikasi yang dapat mengenali emosi ini dari raut wajah seseorang sangat tinggi. Untuk memenuhi minat yang tinggi atas pengenalan emosi pada raut wajah seseorang, penulis berniat untuk mengembangkan sebuah aplikasi yang dapat mengenali emosi seseorang dari raut wajahnya dengan menggunakan machine learning face recognition. Penulis berniat menggunakan framework CNN sebagai algoritma untuk melakukan machine learning face emotion recognition karena algoritma ini yang paling cocok dan mudah untuk digunakan, serta menggunakan arsitektur EfficientNet karena arsitektur ini merupakan arsitektur pengembangan dari Google yang bersifat opensource dan mudah digunakan karena sudah terintegrasi langsung dengan Keras. Program face emotion recognition ini menggunakan arsitektur EfficientNetB2 dan menggunakan dataset FER2013 berhasil mendapatkan akurasi training di angka 95.55% dan akurasi validasi sebesar 63.71%. Walaupun terjadinya overfitting karena perbedaan akurasi validasi dan training yang besar, akurasi testing dari program ini mendapatkan angka 88.21% dan berhasil mendeteksi 7 kategori emosi yang dihasilkan oleh raut wajah manusia......The process of identifying and recognizing a person's emotions so far can only be done directly by looking at his face directly and processing the facial expressions of the person to understand the emotions that are being felt. The emotion of a person's facial expression is something that is the most difficult to understand and the benefits of an application that can recognize this emotion from a person's facial expression is very high. To meet the high interest in recognizing emotions on a person's facial expression, the author intends to develop an application that can recognize a person's emotions from his facial expression using machine learning face recognition. The author intends to use the CNN framework as an algorithm to perform machine learning face emotion recognition because this algorithm is the most suitable and easy to use and uses the EfficientNet architecture because this architecture is a development architecture from Google that is open source and easy to use because it is integrated directly with Keras. This face emotion recognition program using the EfficientNetB2 architecture and using the FER2013 dataset managed to get a training accuracy of 95.55% and a validation accuracy of 63.71%. Despite the occurrence of overfitting due to the large difference in validation and training accuracy, the testing accuracy of this program scored 88.21% and succeeded in detecting 7 categories of emotions generated by human facial expressions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4   >>