Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Budi Setyanta
Abstrak :
Anomali gaya berat Bougeur dan gaya berat bebas udara daerah Perairan Laut Banda dan Pulau Seram dapat dikelompokkan menjadi tiga bagian, yaitu bagian selatan, tengah, utara. Analisis gaya berat berdasarkan pengukuran di darat, digabungkan dengan data anomali free air di laut menghasilkan model struktur kerak yang erat hubungannya dengan komposisi batuan dan posisi tektonik. Struktur kerak di wilayah perairan Laut Banda, terutama tersusun oleh kerak basaltik Laut Banda sebagai alas yang mengalami perlipatan, dan bertubrukan dengan bongkah kerak grantik (Fragmen Benua Australia). Kerak basaltik Laut Banda melandasi batuan sedimen gunung api Pulau Banda, sedangkan kerak grantik melandasi batuan sedimen tersier di Pulau Seram. Tumbuhan sejak awal Pliosen dua macam afilitas kerak yang berbeda ini menyebabkan terjadinya beberapa hal utama, yaitu material-material dari berbagai sumber di Pulau Seram membentuk batuan campur-aduk dan oleh sesar-sesar anjak tersingkap ke atas. Intensitas tektonik juga menyebabkan sebagian bongkah kerak grantik mengalami fragmentasi yang menurunkan nilai anomali. Selain itu tumbukan juga memunculkan batuan vulkanik Kepulauan Banda yang menyebabkan terjadinya tektonik gravitas untuk menuju proses kestabilan kerak basaltik. Model geodinamika kerak yang demikian berimplikasi terhadap produk potensi geologinya, baik yang ekonomis maupun resiko kebencanaan.
Bandung: Pusat Survai geologi Bandung, 2007
551 JSDG 17:6 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
Nur Najmiah Tullailah
Abstrak :
ABSTRAK
Area X, Cekungan Sumatera Utara merupakan target eksplorasi hidrokarbon dengan mengejar target lapisan dalam sebagai prospek baru. Metode seismik telah dilakukan namun hasilnya masih memiliki ambuigitas dalam menggambarkan bentuk bawah permukaan khususnya lapisan dalam di antaranya keberadaan basement sebagai dasar dari lapisan sedimen di atasnya yang menjadi target eksplorasi. Metode Gaya Berat dan Magnetotellurik dilakukan untuk mengkonfirmasi keberadaan basement yang menjadi dasar intrepretasi pada seismic. Metode Magnetotellurik dilakukan untuk menunjukkan distribusi nilai resistivitas litologi di bawah permukaan, dalam hal ini nilai resistivitas antara basement dan formasi lain di sekitarnya. Berdasarkan hasil inversi 2D dan 3D MT pada lintasan 4 dan 6 menunjukkan adanya kontras resistivitas yaitu zona resistivitas tinggi (Rho=102 - 103 ohm.m) pada bagian SW dari lintasan dan pada kedalaman 6000 meter kebawah yang mengindikasikan lapisan formasi yang lebih tua dan dalam hal ini juga diindikasikan sebagai basement , sedangkan di sebelah NE dari lintasan tersebut tampak litologi yang lebih konduktif (Rho= 1-101 ohm.m) dan berada bagian atas dari lintasan yang menunjukkan lapisan formasi yang lebih mudah diindikasikan sebagai lapisan sedimen. Metode Gaya Berat akan menunjukkan distribusi nilai densitas yang diperoleh dari hasil gravity forward modelling. Hasil dari metode gaya berat menunjukkan adanya kontras densitas di bagian sisi kiri dan kanan dari lapangan, dimana berdasarkan peta regional terdapat anomali nilai rendah berkisar 26-42 mGal dan anomaly tinggi berkisar 48-66 mGal. Hasil pemodelan gravity 2D pada lintasan 4 dan 6 menunjukkan keberadaan basement pra-tersier berada pada kedalaman 6000 m kebawah dengan beberapa formasi diatasnya yang terdiri dari formasi pratersier dan formasi yang terbentuk pada tersier. Formasi pada lapisan dalam yang berpotensi sebagai reservoar yang baik adalah Formasi Tampur yang merupakan batu gamping serta Formasi Parapat yang merupakan batu pasir.
ABSTRACT
Area X, North Sumatra Basin is a target for hydrocarbon exploration by pursuing the inner layer target as a new prospect. Seismic methods have been carried out but the results still have ambiguity in describing subsurface forms, especially the inner layers, including the presence of basements as the base of the sediment layer above which is the target of exploration. The Gravity and Magnetotelluric methods are carried out to confirm the existence of the basement which is the basis of the interpretation of seismic. The Magnetotelluric method is performed to show the distribution of lithological resistivity values below the surface, in this case the resistivity value between the basement and other formations around it. Based on the results of 2 D and 3D MT inversion on tracks 4 and 6, the contrast resistivity is high resistivity zone (Rho =Rho=102 - 103 ohm.m) on the SW portion of the track and at a depth of 6000 meters down which indicates the older formation layer and in this case also it is indicated as a basement, while in the NE from the track it appears more conductive lithology (Rho= 1-101 ohm.m) and is located at the top of the track which shows the formation layer which is more easily indicated as a sediment layer. The gravity method will show the distribution of density values obtained from the gravity forward modeling. The results of the gravity method show that there is contrast density on the left and right sides of the field, where based on regional maps there are low value anomalies ranging from 26-42 mGal and high anomalies ranging from 48-66 mGal. The gravity 2D modeling results on tracks 4 and 6 show the existence of a pre-tertiary basement at a depth of 6000 m below with some formations above which consists of pre-tertiary formations and tertiary formation. Formations in the inner layer which have the potential as a good reservoir are the Tampur Formation which are limestone and Parapat Formation.
2019
T51936
UI - Tesis Membership  Universitas Indonesia Library
cover
T. Padmawidjaja
Abstrak :
Nilai anomali gaya berat daerah penelitian berkisar antara 60 sampai 160 mgal, membentuk tinggian anomali antara 100 sampai 160 mgal dan cekungan anomali antara 60 sampai 100 mgal. Anomali tinggi berhubungan dengan munculnya batuan alas atau pendangkalan batuan alas, yaitu Formasi Kiro. Cekungan Wuas diduga merupakan cekungan antar gunung, sedangkan rendahan (cekungan) di Ruteng ke arah selatan diduga disebabkan oleh sesar, dan adanya tinggian anomali diduga akibat adanya batuan granodiorit (Tmg). Batuan sedimen pengisi cekungan terdiri atas Formasi Nangapanda dan Formasi Bari. Berdasarkan kelurusannya terdapat beberapa sesar, yaitu Sesar Ruteng, Sesar Ulumbu, Sesar Pocodede, dan Sesar Bajawa. Model geologi penampang anomali gaya berat AB menunjukkan ada dua lapisan 3 sesuai nilai rapat massanya, lapisan di bawah diduga sebagai batuan alas dengan rapat massa 2.71 gr/cm , dan lapisan 3 di atasnya adalah batuan sedimen dengan rapat massa 2.6 gr/cm . Sesar Ruteng, Sesar Ulumbu, dan Sesar Pocodedeng mengontrol pendangkalan magma yang dapat berfungsi sebagai sumber sistem panas bumi di daerah penelitian.
Bandung: Pusat Survai geologi Bandung, 2010
551 JSDG 20:5 (2010)
Artikel Jurnal  Universitas Indonesia Library
cover
Bambang Purbiyantoro
Abstrak :
Terdapat dua prospek panas bumi di sekitar Gunung Slamet, yaitu prospek Guci di sebelah barat laut dan prospek Baturaden di sebelah selatan dari Gunung Slamet. Menjadi sangat menarik untuk mengetahui hubungan kedua prospek tersebut, apakah prospek tersebut merupakan dua daerah prospek yang dipisahkan oleh tinggian low permeability barrier sehingga tidak akan terjadi interferensi diantara kedua prospek? Dengan melakukan deliniasi zona permeabel berdasarkan analisis data magnetotelurik dan data gravity dikorelasikan dengan data struktur geologi permukaan dan data manifestasi permukaan yang ada, diharapkan dapat mengetahui hubungan diantara kedua prospek tersebut. Dalam penelitian ini dilakukan pemrosesan dan pemodelan data geofisika menggunakan metode magnetotelurik inversi 2-D dan metode gravity 2-D forward. Pemodelan ini sangat efektif dalam mendeteksi zona-zona dengan kontras resistivitas tinggi untuk mendeliniasi zona permeabel lapangan panas bumi. Daerah prospek panas bumi Gunung Slamet dapat terdeliniasi dengan jelas berdasarkan beberapa penampang lintasan yang dibuat, yang menunjukkan daerah prospek berada di sisi sebelah barat Gunung Slamet dengan luas berdasarkan peta BOC sekitar 13 km2, dan berdasarkan peta resistivitas pada elevasi 0 meter yang dikombinasikan dengan peta struktur geologi luas daerah prospek sekitar 22 km2. Dan hasil akhir dari penelitian ini adalah memberikan rekomendasi dalam menentukan lokasi pemboran, dengan sebelumnya membuat model konseptual prospek panas bumi Gunung Slamet.
There are two geothermal prospects in the vicinity of Mount Slamet, the prospect of Guci in northwest and prospects Baturaden in the south of Mount Slamet. Be very interesting to know the relationship between the two prospects, whether the prospect of two regions separated by low permeability barrier heights so that there will be no interference between the two prospects? By doing permeable zone delineation based on data analysis magnetotelluric and gravity, correlated with surface geological structural data and existing surface manifestations, are expected to know the relationship between the two prospects. In this research, processing and modeling of geophysical data using magnetotelluric inversion method 2-D and 2-D method of gravity forward. Modeling is very effective in detecting zones with high resistivity contrast to delineate the permeable zone geothermal field. Geothermal prospect areas of Mount Slamet can be delineated clearly based on some of the tracks that made cross-section, showing the prospect area is located on the west side of Mount Slamet with broad based map BOC about 13 km2, and resistivity maps based on elevation of 0 meters, combined with the structure geological maps, the prospect area about 22 km2. And the end result of this study is to provide recommendations in determining the location of drilling, with previous a conceptual model of geothermal prospects Mount Slamet.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T-43405
UI - Tesis Membership  Universitas Indonesia Library
cover
Tasmika
Abstrak :
ABSTRAK
Keberadaan sistem panas bumi daerah gunung Rajabasa, Lampung Selatan dapat di identifikasi dengan keberadaan struktur geologi yang mengontrol daerah tersebut. Metode gayaberat merupakan metode yang tepat dalam menentukan keberadaan struktur geologi di bawah permukaan bumi. Metode tersebut mampu mendeteksi struktur geologi di bawah permukaan, seperti adanya struktur patahan. Identifikasi keberadaan dan jenis struktur patahan menggunakan prosesing lanjutan seperti analisis metode Horizontal Gradient (HG) dan Second Vertical Derivative (SVD). Metode tersebut mampu mengetahui kontak vertikal antara bodi di bawah permukaan bumi dan menghasilkan peta kontur anomali. Peta kontur yang dihasilkan di gabungkan dengan hasil analisis metode Euler Deconvolution (ED) untuk mendeteksi perkiraan kedalaman anomali tersebut. Metode. Hasil yang didapatkan terdapat beberapa patahan yang terlihat dari peta kontur metode HG dan SVD baik yang sesuai data geologi maupun yang belum terintregasi data geologi dengan kedalaman berkisar 365 meter sampai dengan 1146 meter. Informasi hasil prosesing lanjutan data gayaberat diintegrasikan dengan model struktur geologi dan data geologi daerah penelitian.
ABSTRAK
The existence of a geothermal system in Rajabasa volcano, south Lampung can be identified by the presence of geological structures that control this area. Gravity method is an appropriate method to determine the presence of geological structures beneath the earth's surface. The method is able to detect subsurface geological structures, such as the fault structure. Identification of the presence and type of fault structures using advanced processing of gravity method such as analysis methods Horizontal Gradient (HG) and Second Vertical Derivative (SVD). The method is able to determine the vertical contact between the body below the earth's surface and produce the anomaly contour map. Contour map produced in combination with the results of the analysis of Euler's method Deconvolution (ED) to detect depth estimates of the fault structure. Results in getting there are several faults are visible from a contour map both method HG and SVD either according to the data geological or that has not been integrated to the data geological with depths ranging from 365 meters to 1146 meters. information from the results of advanced processing gravity data are integrated by geological structures model and geological data area of research.
2016
S64173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faishal Adlan
Abstrak :
ABSTRAK
Keberadaan sistem perminyakan di kabupaten majalengka dapat di identifikasi oleh keberadaan rembesan minyak. Berdasarkan dari penelitian LIPI 2016 menggunakan data gravitasi memperlihatkan keberadaan sub cekungan di majalengka. Keberadaan struktur sub cekungan menjadi indikasi yang utama tentang keberadaan hidrokarbon. Potensial terbentuk nya hidrokarbon berdasarkan dari penelitian praptisih dan kamtono 2016 berada di Formasi Cinambo yang berisi batuan sedimen. Namun keberadaan batuan sedimen tersebut tertutupi oleh batuan vulkanik yang di produksi oleh gunung Ciremai. Berdasarkan dari section Audio Magnetotellurik pada penelitian sebelumnya memperlihatkan struktur patahan yang diperkirakan sebagai jebakan hidrokarbon. Untuk mengidentifikasi struktur patahan dan keberadaan potensi struktur sub cekungan maka dilakukan pengambilan data gravitasi. Pengabilan data dilakukan dengan luas area 22 x 17 km2 dengan 170 titik pengukuran dan interval titik sejauh 1 km. Identifikasi keberadaan patahan akan dilakukan dengan menganalisis peta reidual dan penentuanjenis patahan digunakan metode Second Vertical Derivatif SVD . Hasil akhir dari penelitian ini adalah perkiraan model bawah permukaan dengan hail interpretasi terpadu data gaya berat dengan data data pendukung lain nya. hr> ABSTRAK
The existence of petroleum systems in the area of Majalengka can be identified by the presence of several oil seeps. Based on reasearch by LIPI 2016 using gravity method shown the presence of hydrocarbon sub basin in Majalengka. The presence of sub basin in the study area can be a major indication of the presence of hydrocarbon. Hydrocarbon potential according to the research by Praptisih and Kamtono 2016 are in the Cinambo Formation that consist of sedimentary rocks. Unfortunately, the sedimentary rocks are covered by volcanic rocks as a product of Mt. Ciremai. According to resistivity cross section acquired by Audio Magnetotelluric survey by Alfiansyah 2016 show that the faults structure exist which estimated as a hydrocarbon trap. To identify the fault structure and sub basin area we used gravity method. The gravity data acquisition performed in the area of 22 x 17 km2 with more than 170 stations. Identification of the presence of the fault and the type of fault structures can be done by performing the analysis of the gravity data. To identify the fault we analylsed the residual map and and to view the vertical contact between the body below the surface and produce the anomaly contour map Second Vertical Derivative SVD is used. Then the estimated subsurface structure models are made with the integrated interpretation of geological data available. The results of the study showed the structures that control the formation of traps for hydrocarbons accumulation is in the form of normal fault and showed that the study area is covered by the hydrocarbon sub basin.
2017
S68075
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deni Saputra
Abstrak :
[Daerah prospek panas bumi Gunung Arjuno dan Gunung Welirang berada pada jalur vulkanik yang dikenal dengan jalur ring of fire, yaitu rentetan gunung api, baik yang aktif, maupun gunung api yang tidak aktif. Gunung tersebut berasosiasi dengan pembentukan sistem panas bumi yang ditandai dengan kemunculan manifestasi yang terdiri dari mata air panas Padusan, Coban dan Cangar serta adanya fumarol yang terdapat di komplek Gunung Welirang. Dari hasil perhitungan geothermometer daerah prospek panas bumi Gunung Arjuno dan Gunung Welirang memiliki temperatur 250o C dan masuk dalam kategori high temperature (>225 oC). Untuk mengetahui batas, kedalaman, dan geometri dari reservoir yang ada, dilakukan pengukuran dengan metode Magnetotellurik (MT), Time Domain Electromagnetic (TDEM) dan gaya berat. Dari hasil pengukuran tersebut, dilakukan pemodelan pada 138 data MT, 103 data TDEM dan 253 data gaya berat. Selanjutnya hasil pemodelan dianalisa dengan menggunakan penampang 1 dimensi, 2 dimensi dan visualisasi 3 dimensi. Karakteristik reservoir berada pada kisaran 10-30 Ohm-m dengan nilai densitas rata-rata 2.2 gr/cc dan menghasilkan prospek panas Gunung Arjuno dan Gunung Welirang sekitar 40 km2 dengan potensi yang dapat dikembangkan untuk pembangkit tenaga listrik sebesar 140 MWe, rekomendasi penentuan titik bor eksplorasi berada di 2 km baratlaut dari komplek Gunung Welirang. ......The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g/CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang., The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang.]
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43401
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Jahrudin
Abstrak :
ABSTRAK
Pemodelan Inversi 3D struktur bawah permukaan berdasarkan data anomali gaya berat dan dan 2D anomali magnetik dilakukan untuk mengidentifikasi keberadaan potensi hidrokarbon di daerah ldquo;X rdquo;, dimana pada daerah penelitian terdapat struktur up dome yang mengindikasikan beberapa kemungkinan, diantaranya intrusi batuan, carbonate bulid up dan juga mud diapir. Model inversi 3D data anomali gaya berat dan magnetik telah dikoreksi dengan 2 dua penampang seismik yang ada pada daerah penelitian. Model inversi 3D dilakuan pada data anomali residual pada model gaya berat dan 2D pada anomali magnetik. Hasil pemodelan inversi 3D data anomali gaya berat menunjukan bahwa puncak up dome berada pada kedalaman sekitar 800 meter dari permukaan daerah penelitian, hasil ini sesuai dengan analisis spektrum dan kedalaman pada penampang seismik, adapun nilai densitas dari tubuh up dome tersebut bernilai sekitar 2,78 g/cm3. Sedangkan pada anomali magnetik yang telah dilakukan, struktur tersebut mengindikasikan merupakan batuan intrusi dengan anomali suceptibilitas sekitar 7.4 SI, yang menunjukan batuan beku.
ABSTRACT
3D inversion modeling of subsurface based on gravity anomaly data and 2D magnetik anomaly data used for identifcation hydrocarbon potential in ldquo x rdquo . Where in the study area there are up dome structures that indicate some possibilities, including igneous rock intrusion, carbonate bulid up and also mud diapir. 3D inversion modeling of gravity and magnetic anomaly data correlated to two sesimic section which avilable in study location. 3D inversion model is performed on the residual anomaly data on the gravity model and 2D in the magnetic anomaly. The result of 3D inversion modeling of gravity anomaly data shows that the peak up dome is at a depth of about 800 meters from the surface of the research area, this result corresponds to spectrum analysis and depth on the seismic cross section, while the density value of the up dome body is approximately 2.78 g cm3. While on the magnetic anomaly that has been done, structure of the dome indicates an intrusion structure with suceptibility anomaly approximately 7.4 SI, show the structure of igneous rock.
2018
T51598
UI - Tesis Membership  Universitas Indonesia Library